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ABSTRACT
Efficient use of computing clusters is crucial in large-scale data
centers: even small gains in utilization can save millions of dollars.
However, as the number of microsecond-scale tasks increases, using
a CPU to schedule tasks becomes inefficient. Cluster scheduling
running within the network can solve this problem, and brings
additional benefits in scalability, performance and power efficiency.
However, the resource constraints of programmable network de-
vices make network-accelerated cluster scheduling hard. In this
paper we propose P4-K8s-Scheduler, a network-accelerated cluster
scheduler for Kubernetes implemented on a programmable network
device. Preliminary results show that by scheduling Pods in the
network at line-rate, P4-K8s-Scheduler can reduce the scheduling
overheads by an order of magnitude compared to state-of-the-art
Kubernetes schedulers.
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1 INTRODUCTION
Recent years have seen a growing use of real-time data processing
applications. These applications facilitate popular online services
such as web search [2, 27], social networks [3, 24], video streaming
[6, 11], and real-time object localization [19, 26]. In addition, with
the increased adoption of microservices and serverless computing
[8], the number of short tasks scheduled in real-time has grown
significantly [1, 9, 10].

Today, applications typically depend on low-latency tasks that
require service times of a microsecond or less [14]. These tasks are
inherently latency-sensitive and non-optimal scheduling placement
can significantly impact application performance [4]. Therefore,
efficient scheduling in large-scale clusters is becoming increasingly
more important. At the same time, efficient resource utilization
can significantly reduce expenditure and operational costs [5]. A
standard method used today to address this problem is to deploy
a centralized scheduler that can monitor all cluster nodes and be
able to make high-quality placement decisions [12]. However, in
practice, scheduling a large number of tasks as short as 1 𝜇s can
overwhelm centralized schedulers [13, 20].

This work develops P4-K8s-Scheduler, a network-accelerated
scheduler for Kubernetes [7] implemented on a high-performance
programmable network device. A Kubernetes cluster consists of
a set of worker machines, called nodes, which run containerized
applications, and a control plane that manages the nodes. Each
node runs an agent, called kubelet, that ensures that all containers
are running and healthy. The smallest deployable unit of compute
in Kubernetes is called Pod. A Pod is a group of tightly coupled
containers with shared storage and network resources.
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Figure 1: Network-Accelerated Kubernetes Scheduler

2 DESIGN
P4-K8s-Scheduler is designed to address two main problems for
achieving high-performance: (i) reduce the scheduling overhead
of short tasks, and (ii) increase scheduling throughput of Kuber-
netes clusters. P4-K8s-Scheduler can run as a P4 program on a pro-
grammable switch (illustrated in Fig. 1), or on Infrastructure/Data
Processing Unit (IPU/DPU) attached to the Kubernetes Control
Plane. This approach allows performing scheduling decisions at line
rate based on Pod requirements such as number of CPUs, amount
of memory, storage, as well as preferred/required affinity.

A workflow comparison of the standard Kubernetes scheduler
(kube-scheduler) and P4-K8s-Scheduler is shown in Fig. 2. The kube-
scheduler watches for Pods without assigned node, finds the best
node for the Pod to run on, and notifies the API Server about this
decision in a process called binding. In contrast, P4-K8s-Scheduler
processes scheduling requests in the network and forwards the
request to the assigned node.

Network Protocol. The communication protocol allows the
API Server to (i) register nodes and (ii) send scheduling requests
to the P4-K8s-Scheduler. The corresponding packet headers are
shown in Fig. 3. These headers are encapsulated by a UDP packet
header, which allows packets to be processed by standard network
hardware.

Node Registration. Nodes are registered with the scheduler
using unique names. However, the node name can have a length of
up to 253 characters (2024 bits) and Kubernetes supports up to 5000
nodes [17]. The memory and compute constraints of programmable
network devices limit the operations that can be performed with
such values [15]. To address this challenge, the API Server has
been extended to map node names to 16-bit node ID values. These
values are used as register array index on the programmable net-
work device to keep track of the available resources of each node
in the cluster. The API Server sends registration packets with node
ID, number of CPUs, amount of memory and storage. These pack-
ets also specify operation (OP): ADD, UPDATE or REMOVE. The
scheduler parses the packet and updates the registers accordingly.
It then sends the packet to the runtime controller to update the
match-action tables used for filtering and scoring.

Pod Scheduling. Scheduling is the process of mapping Pods to
nodes in the cluster. However, implementing complex scheduling
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Figure 2: Workflow comparison between kube-scheduler and P4-K8s-Scheduler.
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Figure 3: Packet Headers used by P4-K8s-Scheduler.

policies on a programmable network device is not straightforward.
For example, it is not feasible to iterate over an array with the
number of CPUs for each node at terabits per second speed. We
address this problem by pre-computing the results of node filtering
and scoring in the runtime controller and updating the data plane
with appropriate set of match-action entries. Similar to node regis-
tration, the API Server encodes Pod scheduling requests as pack-
ets. Each packet contains scheduling requirements for CPU, mem-
ory, storage, required and preferred affinity key/value/operation
(RAK/RAV/RAO/PAK/PAV/PAO), scoring strategy (SS). In addition,
the packet also contains specification payload (PL) that is used by
the kubelet to create the Pod. If the Pod is unschedulable, the packet
is sent back to the API Server.

3 PROTOTYPE IMPLEMENTATION
P4-K8s-Scheduler was developed using Kubernetes v1.23.5 running
on Ubuntu 20.04 server with AMD EPYC 7302P 16 core CPU @
3GHz, 256GB RAM, Mellanox ConnectX-5, and 64 × 100𝐺𝐸 Intel
Tofino platform.

Node Filtering. Filtering a set of nodes that match a scheduling
request is performed using match-action tables. The table entries
are bitmaps corresponding to node IDs, where a set bit indicates
satisfying the Pod requirements. A logical conjunction of all filter
bitmaps is calculated with node filter action using binary AND
operation and the result is stored in P4 user metadata.

Node Scoring.All nodes are scored based on available resources.
A match-action table using the user metadata bitmap and scoring
strategy as keys assigns the node with highest score to the Pod
request. The scheduling response is then forwarded to the destina-
tion Ethernet, IP address, and output port matching the node ID.
Fig 4 depicts the mechanism for filtering and scoring.

Runtime Controller. The P4 controller processes node regis-
tration packets from the API Server as well as status updates from
kubelets. It generates score and filter match-action table entries,
and groups table updates into batches and transactions to avoid
race conditions.
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Figure 4: Node filtering and scoring mechanism.

4 PRELIMINARY EVALUATION
P4-K8s-Scheduler achieves median task placement latency of∼50 𝜇s
with 1,000-machine switch support, and ∼170 ms total delay for
1,000 scheduling requests. The scheduling overhead has been re-
duced by an order of magnitude compared to state-of-the-art Kuber-
netes schedulers [13], and by up to 50% compared to other network-
accelerated schedulers [16].

5 CONCLUSION & FUTUREWORK
P4-K8s-Scheduler is a network-accelerated cluster scheduler for
Kubernetes that runs on a programmable network device. P4-K8s-
Scheduler increases the efficiency and scalability of Kubernetes by
performing scheduling decisions at line-rate on packets exchanged
between nodes in the cluster. Preliminary results demonstrate that
P4-K8s-Scheduler can reduce task scheduling overheads by an order
of magnitude compared to state-of-the-art Kubernetes schedulers.
Future work will explore advanced scheduling policies (e.g., data
locality [21], network-aware [23]), flow-based scheduling [12], pre-
emption [22] and multi-profile schedulers [18, 25].
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