P4Pir: In-Network Analysis for Smart loT Gateways

Mingyuan Zang§, Changgang ZhengT, Radostin StoyanovT,
Lars Dittmann$, and Noa Zilberman'
$Technical University of Denmark, 'University of Oxford
$Kgs. Lyngby, Denmark, TOxford, United Kingdom
$minza@dtu.dk, ladit@fotonik.dtu.dk, T{name.surname}@eng.ox.ac.uk

ABSTRACT

IoT gateways are vital to the scalability and security of IoT networks.
As more devices connect to the network, traditional hard-coded
gateways fail to flexibly process diverse IoT traffic from highly
dynamic devices. This calls for a more advanced analysis solution. In
this work, we present P4Pir, an in-network traffic analysis solution
for IoT gateways. It utilizes programmable data planes for in-band
traffic learning with self-driven machine learning model updates.
Preliminary results show that P4Pir can accurately detect emerging
attacks based on retraining and updating the machine learning
model.

KEYWORDS

In-network computing; Machine learning; Security; Internet of
Things; P4

1 INTRODUCTION

Recent years have seen a widespread deployment of Internet of
Things (I0T) devices. IoT gateways are one of the network compo-
nents that connect IoT devices with the core network, providing
functions such as data routing and filtering. Due to dynamic IoT
deployments and increasing security threats, IoT gateways are
expected to provide traffic analysis and first-line of defense over
multi-source traffic inputs [18].

Machine Learning (ML) algorithms are used to enhance the ana-
lytical capabilities of IoT gateways [7, 15]. By applying ML models
as part of traffic processing, a gateway can learn from traffic pat-
terns and improve its analytical capabilities [9]. However, efficient
ML deployment at IoT gateways remains a barrier. In particular,
the following challenges exist:

a) Multi-source input collection: Current solutions collecting
and parsing diverse IoT traffic as the input to ML models are using
predefined protocol stacks, either hardware based [13] or software
toolkits [17]. When a gateway connects to new devices, running di-
verse protocols or access technologies, these collection mechanisms
are limited and unfit for scalable traffic analytics.

b) ML inference at the gateway: ML inference solutions rely
on server-based ML frameworks (e.g., Pytorch [14] and Tensor-
flow [1]) for easy implementation and deployment at IoT gateways.
Such frameworks are based on CPU/GPU, where traffic needs to
be sent from the network-pipeline to the CPU/GPU for processing,
bringing extra overheads. For cases that require large models and
high inference accuracy, packet information may be further for-
warded to remote servers/clouds for powerful computing, resulting
in even longer Round-Trip Times (RTT).

PP

|
=g

IoT Traffic Gateway Cloud

Figure 1: P4Pir in IoT scenario.

¢) ML model updates: To keep the ML model updated with dy-
namic IoT traffic, two typical methods have been studied: unsuper-
vised online learning [12] and supervised model retraining [4, 10].
The former saves the extra labeling work, but yields lower accuracy
and reliability. The latter solutions give reliable learning perfor-
mance, but their proposed update schemes do not support updates
at runtime.

In recent years, the development of programmable data planes
(PDP) and in-network computing using the P4 language [2] have
provided new opportunities to solve these challenges. Protocol-
independent and programmable packet processing pipelines drive
in-network analytics, including ML inference [3, 19] and rule up-
dates at runtime [5].

In this work, we present P4Pir, an in-network traffic analysis
solution integrated within IoT gateways as shown in Figure 1. With
runtime data parsing and data plane inference rules updates at the
IoT gateway, P4Pir achieves real-time multi-protocol data collection,
in-network ML-based attack mitigation, and runtime model updates.
Our preliminary evaluation on the low-cost P4Pi platform [11]
shows that P4Pir can improve the accuracy of detecting new attacks
by over 50% compared to static ML-based solutions.

2 SYSTEM DESIGN

Compared with existing in-network inference solutions, running
entirely in the data plane (e.g., [3, 19]), P4Pir engages the control
plane for runtime model updates without interrupting the existing
processing on the gateway target.

Figure 2 depicts P4Pir workflow. Step O shows a typical work-
flow of in-network ML-based detection [20], where a trained model
is mapped to Match/Action table rules and P4 code to analyze the
arriving traffic.

P4Pir supports common IoT protocol headers defined in P4 (e.g.,
messaging protocols [17]) and achieves continuous learning be-
yond existing frameworks by actively collecting traffic features and
updating the model, shown as steps @ - @, to detect and mitigate
emerging threats. Detailed workflow is illustrated as follows.

Control Plane & Servers

Updated Data L0151 BV BV G
Oy
Mapped ML Model P4Pir ® & “# PLANTER
Z .
— I Write table rules [Send Digest | Update table rules|—11M¢,
o} 3 =

Training Data

"~ PLANTER

Trained ML Model

Inputs New inputs
<0
Data Plane

Figure 2: Block diagram of P4Pir workflow.

On top of the existing in-network inference solution, as shown
in step @, P4Pir identifies suspicious traffic from incoming traffic.
While benign traffic is being forwarded, suspicious traffic will be
dropped immediately and logged to the control plane by encapsu-
lating the extracted features in a digest (as in step @). Based on
these digests (labeled by calibration set as in [8]), P4Pir retrains the
current model to learn from the new traffic pattern (as in steps @
& ®). A set of new rules will be generated to map the parameters
of the new model. Updated rules are then inserted to the data plane
and outdated rules are removed (as in step ©). With this updated
setup, P4Pir is able to learn from newly arriving traffic and mitigate
abnormal traffic continuously (as shown in step @).

Two update options are available in P4Pir: parameter updates and
feature updates. Considering the changing distribution of arriving
traffic, the model can be directly updated by inserting the rules with
new parameters and thresholds. When the accuracy shows severe
decrement, it probably means the current features can no longer
portray the current traffic pattern and new features are needed.
Thus, the system can be re-initialized with a new feature extraction
and model mapping process.

3 PROTOTYPE AND EVALUATION

P4Pir prototype was developed on P4Pi [11], using Raspberry Pi 4
(RPi) Model B with 8GB of RAM, and running P4Pi release v0.0.3
using bmv2 with vimodel architecture [16]. For performance evalu-
ation, P4Pir was connected to another RPi as the client and a laptop
with an Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz and 16 GB
RAM as the server. We used a public IoT dataset EDGE-IIOTSET (6]
for model training and evaluation. The dataset includes both benign
traffic collected from different IoT sensors via diverse IoT protocols
and malicious traffic with IoT protocol-related attacks. The attacks
are launched in different time slots in a week-worth of data. To
evaluate the efficiency of continuous learning from P4Pir, we as-
sume as the initial state that the gateway learns only the DDoS TCP
SYN attack on the first day and test the model detection accuracy
by replaying new attacks launched in the following days (common
IoT attacks: vulnerability scanning/HT TP flooding/UDP flooding).
We then compare this baseline’s accuracy with the accuracy when
P4Pir is deployed to update the model and rules.

Preliminary results. Table 1 lists accuracy and F1 score re-
sults of P4Pir implemented on Planter-based [20] Decision Tree
(DT) and Random Forest (RF). Five L4-based traffic features are
used, the DT model is trained with depth of 5 and 1000 leaves, and

M. Zang et al.

SYN | SYN — SCAN | SYN — HTTP | SYN — UDP
Init Base | P4Pir | Base | P4Pir | Base | P4Pir

DT ACC | 0.995 | 0.460 | 0.998 | 0.360 | 0.999 | NaN | 0.886
F1 0.998 | 0.630 | 0.998 | 0.530 | 0.999 | NaN | 0.939
RF ACC | 0.999 | 0.994 | 0.997 | 0.340 | 0.998 | NaN | 0.999
F1 0.999 | 0.997 | 0.998 | 0.510 | 0.999 | NaN | 0.999

Table 1: Preliminary results. (Init - Initial state, Base - Base-
line, SYN - DDoS TCP SYN attack, SCAN - vulnerability scan-
ning attack, HTTP - HTTP flooding attack, UDP - UDP flood-
ing attack).

RF model is trained with 5 trees, depth of 5 and 1000 leaves. The
results show: 1) DT/RF mapped to the data plane for in-network
inference can achieve the same level of accuracy as the baseline
performance on a server in [6], reaching more than 90% accuracy
and F1 score. 2) P4Pir has benefits in improving DT’s performance
on vulnerability scanning attacks, given that DT is less scalable
than RF. 3) Different attack patterns may result in different levels of
accuracy decrement for static models. It might be due to the chang-
ing attack attributes and distributions that static models have not
learned. When P4Pir is deployed, its update mechanism effectively
learns and updates DT/RF parameters to detect new attacks with
increased accuracy of 50% or more. Specifically, P4Pir enables a
gateway to identify UDP flooding after updates, compared to the
baseline when a gateway is not trained with UDP attack. As for the
time used for updates, it takes ~0.05s to retrain a model and ~0.45s
to update new rules in the data plane.

4 CONCLUSION

P4Pir is an in-network ML based analysis solution for IoT gateways,
prototyped on the low-cost P4Pi platform. P4Pir enables self-driven
learning and ML updates using the interaction between data plane
and control plane. Preliminary results in the detection of new at-
tacks demonstrate that P4Pir can scale and detect emerging attacks
by retraining and updating in-network models. Future work will fo-
cus on a distributed deployment of P4Pir and coordinating updates
among P4Pir gateways in a federated manner.

ACKNOWLEDGMENTS

This work was partly funded by the Otto Mensted Foundation and
VMWare.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265—
283.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (jul 2014), 87-95. https://doi.org/10.
1145/2656877.2656890

[3] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmiiller, Tobias Biihler, and
Laurent Vanbever. 2019. pForest: In-network inference with random forests.
arXiv (2019). arXiv:1909.05680

[4] Mojtaba Eskandari, Zaffar Haider Janjua, Massimo Vecchio, and Fabio Antonelli.
2020. Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System
for IoT Edge Devices. IEEE Internet of Things Journal 7, 8 (2020), 6882-6897.
https://doi.org/10.1109/JI0T.2020.2970501

https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://arxiv.org/abs/1909.05680
https://doi.org/10.1109/JIOT.2020.2970501

P4Pir: In-Network Analysis for Smart loT Gateways

(5]

[10]

[11]

[12]

Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li, Zijian Zhang,
Tong Yun, Ying Wan, and Bin Liu. 2022. Enabling In-situ Programmability in
Network Data Plane: From Architecture to Language. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22). 635-649.
Mohamed Amine Ferrag, Othmane Friha, Djallel Hamouda, Leandros Maglaras,
and Helge Janicke. 2022. Edge-TloTset: A New Comprehensive Realistic Cyber
Security Dataset of IoT and IIoT Applications: Centralized and Federated Learning.
https://doi.org/10.21227/mbc1-1h68

Ibbad Hafeez, Markku Antikainen, Aaron Yi Ding, and Sasu Tarkoma. 2020. IoT-
KEEPER: Detecting malicious IoT network activity using online traffic analysis
at the edge. IEEE Transactions on Network and Service Management 17, 1 (2020),
45-59.

Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept Drift
in Malware Classification Models. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 625-642. https://www.usenix.
org/conference/usenixsecurity17/technical- sessions/presentation/jordaney
Tran Viet Khoa, Yuris Mulya Saputra, Dinh Thai Hoang, Nguyen Linh Trung,
Diep Nguyen, Nguyen Viet Ha, and Eryk Dutkiewicz. 2020. Collaborative learning
model for cyberattack detection systems in iot industry 4.0. In 2020 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 1-6.

Roman Kolcun, Diana Andreea Popescu, Vadim Safronov, Poonam Yadav,
Anna Maria Mandalari, Yiming Xie, Richard Mortier, and Hamed Haddadi. 2020.
The Case for Retraining of ML Models for IoT Device Identification at the Edge.
CoRR abs/2011.08605 (2020). arXiv:2011.08605 https://arxiv.org/abs/2011.08605
Sandor Laki, Radostin Stoyanov, David Kis, Robert Soulé, Péter V6ros, and Noa
Zilberman. 2021. P4Pi: P4 on Raspberry Pi for Networking Education. SIGCOMM
Comput. Commun. Rev. 51, 3 (jul 2021), 17-21. https://doi.org/10.1145/3477482.
3477486

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
An Ensemble of Autoencoders for Online Network Intrusion Detection. February
(2018), 18-21. https://doi.org/10.14722/ndss.2018.23204 arXiv:1802.09089

(13

[14

[15

(17

[18

[19

[20

]

]

Arman Pashamokhtari, Norihiro Okui, Yutaka Miyake, Masataka Nakahara, and
Hassan Habibi Gharakheili. 2021. Inferring Connected IoT Devices from IPFIX
Records in Residential ISP Networks. In 2021 IEEE 46th Conference on Local Com-
puter Networks (LCN). 57-64. https://doi.org/10.1109/LCN52139.2021.9524954
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Arunan Sivanathan, Hassan Habibi Gharakheili, and Vijay Sivaraman. 2020.
Managing IoT Cyber-Security Using Programmable Telemetry and Machine
Learning. IEEE Transactions on Network and Service Management 17, 1 (2020),
60-74. https://doi.org/10.1109/TNSM.2020.2971213

Radostin Stoyanov, Adam Wolnikowski, Robert Soulé, Sandor Laki, and Noa
Zilberman. 2021. Building an Internet Router with P4Pi (EuroP4 °21). ACM, New
York, NY, USA, 151-156. https://doi.org/10.1145/3493425.3502762

Qinying Wang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao, Yuhong
Kan, Zhaowei Lin, Changting Lin, Shuiguang Deng, Alex X. Liu, and Raheem
Beyah. 2021. MPInspector: A Systematic and Automatic Approach for Evaluating
the Security of IoT Messaging Protocols. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 4205-4222.

Qiao Yan, Wenyao Huang, Xupeng Luo, Qingxiang Gong, and F. Richard Yu.
2018. A Multi-Level DDoS Mitigation Framework for the Industrial Internet of
Things. IEEE Communications Magazine 56, 2 (2018), 30-36. https://doi.org/10.
1109/MCOM.2018.1700621

Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensous-
sane, Antoine Bernabeu, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.
2022. TIsy: Practical In-Network Classification. https://doi.org/10.48550/ARXIV.
2205.08243

Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensoussane, Shay
Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. 2022. Automating In-Network
Machine Learning. https://doi.org/10.48550/ARXIV.2205.08824

https://doi.org/10.21227/mbc1-1h68
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://arxiv.org/abs/2011.08605
https://arxiv.org/abs/2011.08605
https://doi.org/10.1145/3477482.3477486
https://doi.org/10.1145/3477482.3477486
https://doi.org/10.14722/ndss.2018.23204
https://arxiv.org/abs/1802.09089
https://doi.org/10.1109/LCN52139.2021.9524954
https://doi.org/10.1109/TNSM.2020.2971213
https://doi.org/10.1145/3493425.3502762
https://doi.org/10.1109/MCOM.2018.1700621
https://doi.org/10.1109/MCOM.2018.1700621
https://doi.org/10.48550/ARXIV.2205.08243
https://doi.org/10.48550/ARXIV.2205.08243
https://doi.org/10.48550/ARXIV.2205.08824

	Abstract
	1 Introduction
	2 System Design
	3 Prototype and Evaluation
	4 Conclusion
	Acknowledgments
	References

