
Federated Learning-Based In-Network Traffic
Analysis on IoT Edge

Mingyuan Zang∗, Changgang Zheng†, Tomasz Koziak‡, Noa Zilberman†, and Lars Dittmann∗
∗Technical University of Denmark, ‡Netlight, †University of Oxford

Email: ∗{minza, ladit}@dtu.dk, ‡tomasz.koziak@netlight.com, †{name.surname}@eng.ox.ac.uk

Abstract—The rise of IoT-connected devices has led to an
increase in collected data for service and traffic analysis, but also
to emerging threats and attacks. In-network machine learning-
based attack detection has proven effective in fast response,
but scaling to distributed IoT edge devices risks increasing
communication overheads and raising data privacy concerns.
To address these concerns, we present FLIP4, a distributed in-
network attack detection framework based on federated tree
models. FLIP4 maintains data privacy by enabling distributed
machine learning training while keeping data local on IoT edge,
and provides in-network inference within the programmable data
plane on edge gateway for timely attack labeling and mitigation.
Evaluation results show that FLIP4 can accurately detect attacks
while maintaining source data privacy and enabling lightweight
deployment on IoT edge.

Index Terms—In-Network Computing; Federated Learning;
Security; Internet of Things; P4

I. INTRODUCTION

As more devices from multiple vendors are connected to the
Internet of Things (IoT) network, an increasing volume of data
is collected from end devices. To efficiently process the data
and obtain useful information to make intelligent decisions on
network management and performance optimizations, machine
learning (ML) algorithms have been deployed for traffic anal-
ysis. For instance, ML algorithms have been studied for traffic
engineering or attack detection [1, 2].

To provide accurate analysis capability, a large amount
of telemetry data is sent to server/cloud for ML training
and inference. Such transmissions increase the load on the
communications infrastructure and may lead to long Round-
Trip Times (RTT), increasing the response time to mitigate
attacks. With 6G’s extremely low latency requirements, it is
vital to detect and mitigate malicious traffic timely to prevent
further damage to IoT networks. Offloading attack detection
services from the remote server/cloud to the network edge has
been proposed as a means to provide prompt reaction [3, 4].
The advent of programmable data planes and in-network ML
inference have further driven possibilities for in-network attack
detection [5]. Building upon programmable pipelines and P4
language, an ML inference process can be mapped to the
data plane to directly make a detection decision along with
packet forwarding. By flexibly parsing packets’ features and

This work was partly funded by VMWare, EU Horizon SMARTEDGE
(101092908), and the Nordic University Hub on Industrial IoT (HI2OT) by
NordForsk. For the purpose of Open Access, the author has applied a CC BY
public copyright license to any Author Accepted Manuscript (AAM) version
arising from this submission.

applying ML-based processing, potential threats can be labeled
and mitigated immediately without affecting other parts of the
network.

Although such in-network ML-based attack detection offers
immediacy and flexibility, scaling such solutions to multiple
devices in a distributed system poses challenges, particularly in
the case of multiple gateway access at the IoT edge [6]. To ob-
tain a global analysis of the devices, it is necessary to share the
collected data or statistics with the controller/server to build
the traffic profile. The aggregated profile can be used for global
ML model training and information sharing among the gate-
way devices for local model updates. However, building the
profile and coordinating the learning updates in an efficient and
lightweight manner for IoT scenario presents challenges [7]. 1)
Contributing the collected data to controller/server can result
in an increase in communication overhead as the system scales
to multiple gateways. 2) The collection and sharing of traffic
data may raise privacy concerns and may require compliance
with data protection regulations. Addressing these challenges
requires efficient and lightweight techniques for integrating the
traffic profile and coordinating the learning process in a secure
manner.

To tackle these issues, Federated Learning (FL) algorithms
have been proposed [8] to enable ML-based model training
and inference with the data maintained locally. FL enables
distributed ML processes in a federated manner. Data volume
and communication overheads are reduced by keeping the
input data locally, while sharing model parameters with the
server to maintain data privacy. FL in previous work has
been mainly applied to images and texts, and deep learning
algorithms are used to learn such data inputs [8]. In IoT
scenarios, tabular data like short messages or packet fields
are the common information parsed from the collected IoT
traffic. To analyze such data, deep learning algorithms may
require complex neuron-based training with high overheads.
Conversely, tree-based learning models show advantages in
accurate performance and easy deployment [2, 9]. To drive
the ensemble tree-based model to play its advantages in FL-
based attack detection service on IoT edge, there is still a
lack of discussion and solutions to efficiently coordinate the
tree-based FL design with the in-network ML-based attack
detection in distributed IoT scenario.

In this work, we present FLIP4, a distributed in-network
attack detection solution based on federated tree-based models.
FLIP4 does model inference in-band to quickly detect and

mitigate attacks. It utilizes FL to coordinate an efficient dis-
tributed deployment of in-network attack detection, reducing
communication overheads and preserving data privacy. Instead
of sharing all collected data, FLIP4 trains a global model by
sharing local model weights without leaking any source data.

The main contribution of this work is as follows:
• We propose FLIP4, a distributed privacy-preserving

framework for in-network attack detection and mitigation
on IoT edge. (§III)

• FLIP4 introduces FL and Differential Privacy within the
framework to coordinate the model learning and inference
process, to reduce communication overheads, and to
enhance data privacy. (§IV-B)

• FLIP4 coordinates in-network inference and model up-
dates at runtime to achieve model mapping and update
processes in a flexible and automated manner. (§IV-A)

We present an evaluation showing that FLIP4 achieves ac-
curate attack detection while maintaining source data privacy.
Additionally, the framework is lightweight and can be easily
deployed on IoT edge with negligible overhead. (§V)

II. RELATED WORK

A. Traffic Analysis on IoT Edge

The heterogeneity and dynamic distributed deployment of
IoT end devices like sensors and actuators have left vulnera-
bilities and attack vectors for malicious activities. Meanwhile,
IoT devices commonly have limited computing resources
and may operate on low-power configurations, resulting in
challenges in efficient security mechanisms. Traffic analysis
has been studied to learn the traffic pattern and detect the
potential risks in IoT networks [10]. To identify malicious
traffic from the dynamic network, ML has been applied
to detect anomalies and deviations. The application of ML
can provide competent attack detection over the distributed
deployment of IoT devices [11].

B. Programmable Data Plane

Programmable data plane allows packet processing cus-
tomization on network devices. In a programmable data plane,
custom packet processing logic can be defined using a pro-
gramming language such as P4 [12]. P4 can define match-
action (M/A) tables and pipelines of the programmable data
plane. As a lookup table, M/A table is used to match packets to
specific actions based on their headers. When a packet arrives,
its header is parsed for looking up an entry in the match-
action table. The corresponding action associated with that
entry is then executed to determine how the packet should be
processed. Such programmability and flexibility have driven
various research fields like in-network ML.

C. In-network Machine Learning

In-network machine learning (ML) techniques provide line
rate inference on programmable network devices, within the
network. Different from traditional ML services that train and
deploy models either on a server or an accelerator (e.g., GPU),
in-network ML first trains a model on a server (control plane),

then converts the model to a series of packet processing logics
or M/A table rules, and finally loads the model to do inference
on a network device (data plane). Previous works have covered
ML models such as tree models (Decision Tree, Random
Forest, XGBoost (XGB)) [4, 13, 14, 15], Neural Network
(NN) [6, 16, 17], and other classical models (k-means, Support
Vector Machine, and Naı̈ve Bayes) [1, 3, 18]. The benefits of
running ML models on the data plane are low-latency response
and line-rate processing ability. However, due to hardware
limitations of programmable network devices, mapped models
trade-off accuracy and model size, and have different update
flexibility.

D. Federated Learning

Federated Learning (FL) provides a distributed learning
scheme to keep the data locally and avoid directly sending
the data to the server. Classical ML algorithms can be trained
locally in a distributed manner and the parameters of the
models are sent to the server for averaging and obtaining
the global model. Existing work has applied FL for anomaly
detection in network traffic to label potentially malicious
behaviors. For instance, researchers in [7] deployed a NN for
local training to enable automated ML-based attack detection
in IoT scenarios. Differential Privacy (DP) has been studied
to further enhance training privacy [19], using techniques
such as clipping and adding random noise during the gradient
computation process. DP uses those to increase the difficulty
of inverting parameter data of shared models and mitigate the
risk of attackers intercepting private information.

E. Design Challenges

Despite the potential benefits of deploying in-network ML
and FL separately, some challenges need to be addressed to
deploy the FL together with in-network ML for accurate and
timely attack detection over the distributed gateways on IoT
edge. Besides the challenges listed in the introduction section,
more challenges need to be considered with respect to the FL
deployment: 1) How to enable lightweight learning and update
process to adapt to distributed IoT setup. 2) How to secure the
model-sharing process with low overhead to prevent malicious
interception. 3) How to integrate the local information into
a global model and drive the local update for in-network
inference process. In this work, FLIP4 is proposed to approach
these challenges by introducing federated tree models with
DP to in-network ML inference process and providing timely
attack detection and mitigation service on IoT edge.

III. PROPOSED DESIGN

Network Scenario. In this work, we consider a network
scenario with multiple switches acting as IoT gateways that
are deployed between the IoT end devices and a remote server
in the cloud. Each IoT end device is assumed to be at risk
of network attacks like Scanning, Man-in-the-Middle (MitM),
Distributed Denial of Service (DDoS), etc. An attacker might
exploit one of the devices to launch protocol attacks or use
several of them as a botnet.

User 1

User 2

User 3

User 1 ML Model

User 2 ML Model

User 3 ML Model

Local Data

Model offload/updates

Mapped Model
Differential Privacy

Trained Model

Aggregation
Control Plane Process User 1

Cloud

Gateway 1
Gateway2

Noise Model

1 2

3

5

6

7

4 8

Fig. 1. System design of FLIP4.

System Design. The proposed design is a privacy-
preserving in-network analysis framework based on FL and in-
network ML. Under this framework, traffic is being processed
inside the IoT gateway with low latency and high throughput,
traffic data remain locally, and uploaded models are added
with noise to prevent privacy leakage. The complete process
consists of the following steps. A gateway (a switch) is first
initialized with a local model trained using a local traffic
dataset (Figure 1 step ❶ and ❷). The trained model is
offloaded and mapped to the data plane pipeline for in-network
inference by running a P4 code and inserting mapped table
entries reflecting the model structure and parameters (Figure 1
step ❸ and ❹). Incoming traffic from each user device passes
through the programmable data plane on IoT gateway for
header parsing and feature extraction. The extracted informa-
tion goes through the M/A pipeline with inference logic for
labeling. If a packet is labeled as benign, it will be forwarded,
otherwise, it would be dropped. To maintain a global model
for the server over the local models on multiple gateways,
the parameters of the trained model on each IoT gateway are
sent to the server with the protection of Differential Privacy
(as Figure 1 step ❺). When the server receives the updated
information from all gateways, the aggregator starts to average
the parameters to generate a global model, and the parameters
of this global model are sent back to each IoT gateway for
local model updates (as Figure 1 step ❻). The mapper on
each gateway coordinates the control plane and data plane to
map the updated model’s parameters to table rules and insert
the new rules to the data plane pipeline at runtime (as Figure 1
step ❼ and ❽). The training process is further split into model
training and communication process. In this system workflow,
the model training includes local training on the IoT gateway,
and global training on the server. Communication refers to the
interaction between the control plane and data plane within the
IoT gateway, and to the parameter exchange between the IoT
gateway and the server.

The FLIP4 system combines interaction between the data
plane, control plane, and server to achieve FL-based in-
network attack detection. It combines three types of compo-
nents: trainer, mapper, and aggregator.

• Trainer: The role of the trainer is to train the local model
on every single device. It runs on the IoT gateway control
plane and preprocesses local data. It next initializes the
local model and conducts the model training.

• Mapper: The completeness of model training will trigger

Codes
00
01
10
11

Leaf
2
2
1
0

!2

0 1

≤ "

2
Branch 2

Branch 1
!1

!1

!2

≤ #> #

> "

Branch
1

Branch 2
0

1
2

Feature 1
0
1
2
…
n

$!%!
0
0
0

…
0

Branch 1
Codes

00
01

Leaf
0
1

$!%"
0
1
1

…
1

$"%!
0
1
1
…
1

$"%"
0
0
1
…
1

Leaf
0
1
2

Codes
00
01
1*

Feature 2
0
1
2
…
n

Branch 3
Branch 2

Stage 1 Stage 2

Table 1: Feature 1 Table 2: Feature 2 Table 3: Tree 1 Table 4: Tree 2

Feature 1
0

…
α
…
n

$!
0

…
0

…
1

Branch 1

$"
0

…
0

…
1

Feature 2
0
…
β
…
n

Branch 2

Feature Table 1 Feature Table 2 Tree Table

=

Model offload/updatesTrained Model Feature Space Mapped ML Model

Fig. 2. ML model inference mapping process to a programmable data plane
in an encode-based method. A single decision tree is depicted as an example.

the mapper to map the model inference process to the
data plane. It maps the trained model to P4 code and a
set of M/A table rules [4]. These rules are inserted by the
control plane into the data plane pipeline for in-network
inference. The data plane of each IoT gateway runs the
generated P4 code, and M/A rules are written to the data
plane’s tables for in-network inference at runtime.

• Aggregator: When the trainer completes model training
based on the local data, the parameters of the local model
are sent to the server, where the aggregator computes a
federate averaging over all local models to gain the global
model. It then sends the averaged parameters back to the
IoT gateway for local updates.

Figure 1 illustrates a scenario where multiple users (end
devices) access through the same gateway in a multiple access
gateway scenario. This includes a more dedicated scenario
when a gateway serves the data access from a single user. De-
pending on the deployment location and service requirement,
the access scenario may vary but can both be supported in
FLIP4 with the same process for FL-based in-network attack
detection and mitigation.

IV. IMPLEMENTATION

A. In-network Attack Detection and Model Mapping

To enable attack labeling and mitigation, a trained ML
model is mapped to data plane as a part of ingress processing
using P4 code and a set of M/A rules. Several models have
been studied in related work for mapping, which includes tree-
based models and neural networks [6]. In this work, FLIP4
uses tree-based ensemble models like XGB [13]. Compared
with NN [7], tree-based models perform better, accuracy wise,
on tabular data which fits the packet features. Due to the
“simpler” structure and similarity to the M/A pipeline, tree-
based models utilize fewer resources than the NN [13].

Data Preprocessing. To achieve in-network attack detec-
tion and mitigation, features need to be extracted and prepared
for ML inference before a packet is forwarded to the next hop.
By defining the packet header parser and pipeline processing
in P4 language, features can be extracted to metadata within
the data plane. The extracted features are preprocessed into
a format suitable for ML inference. They are then used for
in-network ML inference to do the classification task and
decide whether the packet is benign or malicious. In this work,
features like port information and TCP-related flags [protocol,
src port, dest port, SYN flag, ACK flag] are extracted and
processed for model training and inference.

In a single-switch deployment in previous work [5], it is
assumed that collected traffic features are shared in digests
to the control plane/server. In FLIP4, such data sharing step
is avoided by introducing the FL method to share model
parameters instead. In this process, data distribution could be
a concern as it may affect the local model and the model
integration performance at the server might be affected [20].
For instance, it is usually assumed that the data is independent
and identically distributed (IID) in a centralized ML model.
This might not always be the case in IoT edge, considering
that the local data is collected across different devices. The
distribution of the data may vary if the end devices have
different network configurations or are at risk of different types
of vulnerabilities or attacks. Thereby, both IID and non-IID
scenarios are studied in this work.

Model Mapping and Update. When a model completes
initial local training, the model structure is mapped to the
data plane for in-network inference. This involves breaking
down the model into a series of simple operations that can
be performed by the processing pipeline. Figure 2 depicts
a simplified pipeline and demonstrates this process. When a
model finishes its training process, a model structure consisting
of tree nodes and branches is obtained as plotted in the
upper left corner of Figure 2. Such a tree structure gives a
splitting example of feature space with two features (as the
square plot on the right side of “=”). For each split (decision
boundary/branch) in the tree, feature space is divided into two
regions with one region indicating the “left” branch and the
other region indicating the “right” branch. When a data sample
traverses the tree, the sequence of branches that a data sample
follows forms a feature split path, where the value of input
features are compared against the threshold values, and then
proceeds down the appropriate branch of the tree. To map
such model structure to the data plane pipeline, M/A table
rules are generated by translating the feature split path into
the feature table and tree table. The encode-based solution of
Planter [13] is used to encode the parameters. The feature
tables use input feature values and feature splits as match
conditions and the encoded values as actions pointing to the
next tree node and branch. The tree table records the code
pairs as match conditions to output the labeling decisions.

With this mapping workflow, model updates can be enabled
in a more flexible manner. Compared with methods that hard-
code the model parameters in P4 code, mapping the model to
table entries provides the flexibility to change and update the
model at runtime building upon the architectural advantages
of programmable data plane.

B. FLIP4’s Federated Learning and Distributed Deployment

Turning an in-network ML inference design into a dis-
tributed one with FL on multiple gateways, requires addressing
several problems.

Local Results Integration. In previous work, FedAvg algo-
rithm [21] was used to update the weights of neurons in NN
model. In tree-based ensemble models, the results’ integration
method is adapted to the tree structure. To update the tree

Cloud – no private info

Local Model !!# Local Model !!"

Local – with private info

Model Aggregation

…

!!# … !!"

!!# + Noise !!" + Noise

#$%, #$&, … , #$'#%%, #%&, … , #%'

!aggregation

Fig. 3. Sample workflow of FL function for model sharing and parameter
updates with DP.

model with a set of data samples D = {(xi, yi)}ni=1, the
objective function of tree f can be denoted as:

L (f) ≈
n∑

i=1

(ℓ (yi, ŷ) + gif (xi)) + Ω (1)

where l is leaf node, ŷ is prediction of x, gi is a gradient of the
loss function, and Ω = γL+ λ

2 ∥w∥22 (γ, λ are penalises). To
update model parameters means to update the gradient weight
wl = −

∑
i∈Il

gi

|Il|+λ [9]. The weights of leaf nodes contribute to
the vote and affect the predicted value. If the leaf weight is
higher, the corresponding data sample is more likely to be
classified as positive, and vice versa. Model updates therefore
aim to update such weights or probabilities in leaf nodes.

Model Update. Figure 3 depicts a sample workflow of
the FL function in FLIP4. To start with, the server initial-
izes a model structure and sends it out to M local devices
[D1, ..., Dm]. With this information to initialize the model
structure, the local model is trained using the local data. The
parameters of the trained local model [w11, ..., w1n] are packed
and sent from each device to the server. Extra noise is added
for DP to protect the model-sharing process. To update the
global model, the central server aggregates the local models
from each device [Mc1, ...,Mcm] using a weighted average.
The aggregated model is then sent back to the local devices. To
update the local model, each device takes the averaged weights
computed as previously described to update the decision
boundaries of the tree, as well as the corresponding newly
generated M/A table entries to map the updated inference.

Node Communications. FL can help reduce communica-
tions cost, compared with a scenario where all data is for-
warded to the cloud. By properly selecting the communication
mechanism, the communications cost can be further optimized.
In the IoT scenario, devices require a communication protocol
that can support low-power devices, such as web sockets. A
socket has a low delay when sending models between par-
ties [22]. To keep FLIP4’s gateways synchronized in model’s
update process, a time window is set at the server, ensuring that
the averaging process is only triggered when all parameters are
received from gateway nodes. Thereby, model updates can be
ensured in a lightweight and reliable way.

As a transmission of model’s parameters may be intercepted
by the attackers and leak the model information, Differential
Privacy (DP) is applied to the parameter communication pro-
cess by adding random noise to the model information. DP can

TABLE I
DETECTION ACCURACY WITH/WITHOUT DP ON CICIDS 2017 DATASET.

Gateway1 Gateway2 Gateway3 Global Offline

NN

(Baseline)

IID 1.0 1.0 1.0 1.0 1.0

Non-IID 0.9982 0.8430 0.5125 0.9649 0.9999

XGB

(FLIP4)

IID 1.0 1.0 1.0 1.0 1.0

Non-IID 0.9994 0.8124 0.5836 0.9681 0.9999

DP-XGB

(FLIP4)

IID 0.9182 0.8991 0.9467 0.9417 1.0

Non-IID 1.0 0.9064 0.6367 0.9274 0.9999

measure and control the leakage of the model information by
statistically characterizing the impact of a single data sample
on the model. The concept privacy budget [9] is used to evalu-
ate the performance of the differential privacy mechanism and
it is expected to be as small as possible. Nonetheless, adding
noise will lead to a performance loss in the model. Thus, there
is a trade-off between privacy and model performance. Rényi
Differential Privacy [19] with Gaussian mechanism [9] is used
in this work by adding calibrated Gaussian noise to keep the
simplicity and succinctness.

V. EVALUATION AND EXPERIMENTAL RESULTS

Experimental Setup FLIP4’s data plane code is imple-
mented in P4 language using bmv2 with v1model architecture
and prototyping on Raspberry Pi using P4Pi-v.0.0.3 [23].
Python code provides controller and server functionality.
FLIP4 extends the design in FL algorithm [9] and Planter [13]
for ML training and inference functions. To evaluate FLIP4’s
performance on multiple nodes, Mininet is used for network
emulation. Baseline results are taken from offline model
learning using NN in PyTorch and XGB in sklearn.

Network Setup: As FLIP4 is deployed for a distributed
network scenario, a SOHO (Small Office/Home Office) net-
work scenario is taken as a sample scenario where a limited
number of gateways are connected. A network topology is
built in Mininet to simulate a connection at the network edge
with multiple switches acting as gateways and these gateways
are linked with an edge switch connecting to the server. The
parameters of the topology vary between the experiments.

Dataset: Public dataset CICIDS 2017 [24] is used as source
data, which includes both benign and malicious network
traffic. In this work, we use Scanning, DDoS, and Botnet
attacks as emerging attacks from IoT end devices assuming
that remote server/cloud has to learn these attacks.

A. Evaluation Metrics

Detection Accuracy: Several metrics can be used to eval-
uate detection performance. In this paper, we use Accuracy
(ACC), True Positive Rate (TPR)/ False Positive Rate (FPR),
Area Under the ROC Curve (AUC) as the metrics to evaluate
detection performance. They are defined as below, where
TPR = TP

TP+FN and FPR = FP
TN+FP .

ACC =
TP + TN

TP + TN + FP + FN
,AUC =

∫
TPR d(FPR)

(2)

3 5 7 9

0.7
0.8
0.9
1.0

A
U

C

DDoS Attack

Offline
FLIP4
Local

(a) AUC vs. Gateway Num.
3 4 5 6 7 8 9 10

12
14
16
18

D
at

a
Se

nt
 (K

b) DDoS Attack

(b) Data Sent vs. Tree Num.

3 5 7 9

0.7
0.8
0.9
1.0

A
U

C

Scanning Attack

Offline
FLIP4
Local

(c) AUC vs. Gateway Num.
3 4 5 6 7 8 9 10

12
14
16
18

D
at

a
Se

nt
 (K

b) Scanning Attack

(d) Data Sent vs. Tree Num.

3 5 7 9

0.7
0.8
0.9
1.0

A
U

C

Botnet Attack

Offline
FLIP4
Local

(e) AUC vs. Gateway Num.
3 4 5 6 7 8 9 10

12
14
16
18

D
at

a
Se

nt
 (K

b) Botnet Attack

(f) Data Sent vs. Tree Num.
Fig. 4. Scalability evaluation of FLIP4 (DP-XGB). Offline - model trained
by source data, FLIP4 - global model, local - local model. Graphs (a),(c),(e)
present detection accuracy in terms of AUC score vs. number of switches
under different attacks. Graphs (b),(d),(f) present data sent vs. number of
switches. The attacks shown are (a),(b) DDoS, (c),(d) Scanning, (e),(f) Botnet.

Communication Overhead: To evaluate the volume of data
being sent to the server for model sharing, the number of sent
bytes is recorded as communication overhead.

B. Experimental Results

Detection Accuracy. Table I provides a summary of detec-
tion accuracy of FLIP4 using CICIDS 2017 dataset. Taking
the XGB model in FLIP4 as an example, Table I presents
the detection performance of the model implemented in an in-
network manner with/without DP (DP-XGB/XGB) enabled on
IID/non-IID dataset, where IID data is obtained by shuffling
the dataset. To clearly list the performance results of local
models at gateways and the global model in server, a network
topology with 3 access gateways is setup on edge. Learning
results on source data at the server are also listed as offline
results. The results show that: a) Based on local information
and local training, the global model is able to integrate the
local models and present accurate attack detection without
directly gathering the local data at the server. Due to the
privacy trade-off, FLIP4’s global accuracy is slightly lower
than offline results that are directly trained from source data,
but is higher than NN model’s global accuracy. b) FLIP4
provides higher detection accuracy for IID data than for non-
IID data. Considering that the global model is an average
of the model at each gateway (switch), the distribution of
local data may affect the model averaging performance. c)
Introducing DP into the FL model can lead to a minor accuracy
degradation (e.g., 4% decrement in accuracy for non-IID data).
Such degradation is caused by the introduction of noise in DP
method, which is a trade-off between accuracy and privacy.

Scalability. As FLIP4 is designed to achieve distributed
deployment on multiple gateways (switches), scalability tests
are done to evaluate how FLIP4 can scale to a different number
of gateways. Figure 4 (a) (c) (e) show the detection accuracy
results in terms of AUC on three types of attacks (a-DDoS,
c-Scanning, e-Botnet) when the XGB model is trained with
5 trees and a depth of 6. The bars present a general trend
that detection accuracy slightly increases as more gateways
are added to the network and promoted to the local training.
This is especially the case for Botnet attacks where the local
gateways suffer from botnet exploitation traffic.

Communication Overhead. Figure 4 (b) (d) (f) illustrate
how the volume of data may vary as the model size scales up
under different attack patterns. In this figure, as the number
of trees in the model increases, the model size also increases,
resulting in a larger number of parameters that are shared
with the server for global integration during the decision-
making process. The average volume of data sent from each
local gateway to the server also increases. This data volume is
similar to Logistic Regression-based FL [25] and is less than
the one based on NN [20] . Note that this figure presents the
effect of a number of trees in communication overhead, other
parameters like the depth of trees may also cause effects. For
instance, the data volume jumps from 6 trees to 7 trees in
Figure 4 (b) (d) is due to the increasing depth in the trained
model. When it comes to the processing time in this setup, it
takes ∼0.011s for the local gateway to do training and ∼0.712s
for the server to do global integration and update. For in-
network ML inference, it takes ∼0.107s for the controller to
insert table entries. In this experiment, time window for global
integration is set to 15s when 5 local gateways are connected,
where the window setup may vary by considering the number
of gateways, as the integration in FLIP4 is triggered only when
all gateways complete the model sharing to ensure reliability.
Asynchronous FL [26] can provide a more flexible integration
process by reducing the waiting time for local sharing.

VI. CONCLUSION

In this paper, we present FLIP4, an FL-based in-network
attack detection and mitigation solution for distributed gate-
way deployment. In-band packet processing and in-network
ML inference are configured for timely attack detection and
mitigation on IoT edge. FL is introduced to adapt to the
distributed setup, connecting multiple edge gateways. With
FL introduced, the server can train a global model over the
local model received from each IoT gateway without directly
querying traffic data. In this manner, privacy can be preserved
and communication overheads can be reduced. Differential
Privacy is used to improve the privacy of the model-sharing
process. Results show that FLIP4 can achieve accurate in-
network attack detection and obtain an accurate global model.
The framework deployment achieves flexible design with in-
network ML inference providing low-latency attack detection
and mitigation on IoT edge as well as FL preserving the data
privacy and model updates with insignificant communication
overhead. Future work may extend the design by focusing

on asynchronous FL integration and deployment on heteroge-
neous software or hardware devices.

REFERENCES
[1] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensoussane, A. Bern-

abeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman, “IIsy: Practical
In-Network Classification,” 2022.

[2] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW). IEEE, 2018, pp. 29–35.

[3] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in Proceedings of the 18th ACM
workshop on hot topics in networks, 2019, pp. 25–33.

[4] C. Zheng and N. Zilberman, “Planter: seeding trees within switches,” in
SIGCOMM’21 Poster and Demo Sessions, 2021, pp. 12–14.

[5] M. Zang, C. Zheng, R. Stoyanov, L. Dittmann, and N. Zilberman,
“P4pir: in-network analysis for smart iot gateways,” in Proceedings of
the SIGCOMM’22 Poster and Demo Sessions, 2022, pp. 46–48.

[6] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas, “Line-speed and
scalable intrusion detection at the network edge via federated learning,”
in IFIP Networking. IEEE, 2020, pp. 352–360.

[7] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan,
and A.-R. Sadeghi, “Dı̈ot: A federated self-learning anomaly detection
system for iot,” ICDCS, pp. 756–767, 2018.

[8] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” arXiv preprint, 2015.

[9] S. Maddock, G. Cormode, T. Wang, C. Maple, and S. Jha, “Federated
boosted decision trees with differential privacy,” in CCS ’22, 2022.

[10] N. Hadar, S. Siboni, and Y. Elovici, “A lightweight vulnerability
mitigation framework for iot devices,” in IoTS&P ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 71–75.

[11] R. Kozik, M. Choraś, M. Ficco, and F. Palmieri, “A scalable distributed
machine learning approach for attack detection in edge computing
environments,” JPDC, vol. 119, pp. 18–26, 2018.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
and et al., “P4: Programming protocol-independent packet processors,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[13] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Vargaftik, Y. Ben-
Itzhak, and N. Zilberman, “Automating In-Network Machine Learning,”
2022. [Online]. Available: https://arxiv.org/abs/2205.08824

[14] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pforest: In-network inference with random forests,” 2019.

[15] X. Hong, C. Zheng, S. Zohren, and N. Zilberman, “Linnet: Limit order
books within switches,” in SIGCOMM’22 Poster, 2022.

[16] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi,
P. Costa, H. Haddadi, and R. Bifulco, “Re-architecting traffic analysis
with neural network interface cards,” in NSDI 22, 2022, pp. 513–533.

[17] T. Swamy, A. Rucker, M. Shahbaz, and K. Olukotun, “Taurus: An
intelligent data plane,” arXiv preprint arXiv:2002.08987, 2020.

[18] R. Friedman, O. Goaz, and O. Rottenstreich, “Clustreams: Data plane
clustering,” in SOSR, 2021, pp. 101–107.

[19] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Computer
Security Foundations Symposium (CSF), 2017, pp. 263–275.

[20] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A
performance evaluation of federated learning algorithms,” ser. DIDL ’18,
New York, NY, USA, 2018, p. 1–8.

[21] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2016.

[22] L. Heiko, B. Nathalie, T. Gegi, Z. Yi, and et al., “IBM federated learning:
an enterprise framework white paper V0.1,” CoRR, vol. abs/2007.10987,
2020. [Online]. Available: https://arxiv.org/abs/2007.10987

[23] R. Stoyanov, A. Wolnikowski, R. Soulé, S. Laki, and N. Zilberman,
“Building an internet router with P4Pi,” in ANCS, 2022, p. 151–156.

[24] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in ICISSP 18, 2018, pp. 108–116.

[25] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in IEEE INFOCOM 21, 2021, pp. 1–10.

[26] J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and H. Huang,
“Adaptive asynchronous federated learning in resource-constrained edge
computing,” IEEE TMC, vol. 22, no. 2, pp. 674–690, 2023.

https://arxiv.org/abs/2205.08824
https://arxiv.org/abs/2007.10987

	Introduction
	Related Work
	Traffic Analysis on IoT Edge
	Programmable Data Plane
	In-network Machine Learning
	Federated Learning
	Design Challenges

	Proposed Design
	Implementation
	In-network Attack Detection and Model Mapping
	FLIP4's Federated Learning and Distributed Deployment

	Evaluation and Experimental Results
	Evaluation Metrics
	Experimental Results

	Conclusion

