MUTA: Enabling Multi-Task Neural Network
Inference in Programmable Data-Planes

Kaiyi Zhang', Changgang Zheng?, Nancy Samaan', Ahmed Karmouch!, Noa Zilberman?
1School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada
{kzhan122, nsamaan, akarmouc} @uottawa.ca
2Department of Engineering Science, University of Oxford, Oxford, United Kingdom
{changgang.zheng, noa.zilberman} @eng.ox.ac.uk

Abstract—The need for real-time inference of large volumes
of data led to the development of in-network machine learn-
ing. Programmable network switches can now execute various
machine learning models in the data-plane at line rate. While
a stream of data may require several prediction tasks, such as
predicting bit rate, flow size, or traffic class, current solutions
only support separate models for each task. This places a
significant burden on the data-plane and leads to substantial
resource consumption when deploying multiple tasks. To solve
this problem, we introduce MUTA; a novel in-network multi-task
learning solution. MUTA enables executing multiple inference
tasks concurrently in the data-plane, without exhausting available
resources. It introduces a data-plane mapping methodology to
fit non-binarized multi-task neural networks within network
switches. MUTA is deployed on P4-based hardware switches, and
is shown to reduce memory requirements by x10.5 and improve
accuracy by up to 9.14% using limited training data, compared
with state-of-the-art single-task learning solutions.

Index Terms—In-network computing; multi-task learning;
neural networks; programmable data-planes

I. INTRODUCTION

Al-assisted network management schemes traditionally de-
ploy learning models on either end-hosts or network control-
planes [1]. However, this approach leads to long reaction times
to events and sometimes consumes significant bandwidth [2].
Programmable switches, using domain-specific languages like
P4 [3], offer a unique opportunity to run machine learning
(ML) inference algorithms directly within the data-plane,
enabling learning-based network management analysis at line-
rate, without affecting network forwarding and with ultra-low
latency response times [4].

Prior in-network ML research has introduced numerous
implementations of ML models in the data-plane, such as
tree-based models [5, 6] and BNN models [7, 8]. These
studies address only a single network management task at
a time, using one deployed model. This approach requires
the deployment of multiple independent models when multiple
management tasks are needed. For example, ensuring Quality
of Service (QoS) and optimizing network resource allocation
involve numerous management tasks, such as traffic class
prediction, bandwidth prediction, and duration prediction [9].
However, given the limited resources of network switches,
deploying individual models for each task can exhaust or even
exceed all the switch resources [6]. Additionally, some tasks
are considered as hard-to-label tasks, which refer to tasks

where accurately labeling collected traffic data is challenging
(e.g., labeling traffic class is labor-intensive). Training models
for such tasks with insufficient labeled data often results in
poor model performance.

Multi-task learning (MTL) [10] emerges as a promising so-
lution to these issues. MTL enables the simultaneous execution
of multiple related tasks by leveraging shared feature repre-
sentations, providing two key advantages for in-network ML.
First, a single multi-task model can address multiple tasks,
reducing switch resource consumption compared to deploying
individual models for each task. Second, tasks with abundant,
easily obtainable labels can supplement the training of hard-
to-label tasks by contributing shared representations, thereby
improving their accuracy. Thus, deploying MTL within the
data-plane can be both resource efficient and enhance the
performance of tasks with insufficient labeled data.

Neural network architectures are often used for MTL [10],
building upon their ability to learn and share representations
across multiple tasks. However, there are two challenges to im-
plementing neural networks inference in the data-plane. First,
the data-plane pipeline does not support complex operations
required for neural network inference, such as matrix mul-
tiplication and floating-point operations. Second, the limited
resources in the data-plane restrict the size of neural network
models, making it difficult to deploy a large model on a single
switch. Given that neural network models used for MTL are
usually deep, this is a notable challenge. As a result, hardware
modifications were suggested to support the neural network-
based inference [11] or fully-binarized neural networks were
used as alternatives [7, 8].

To address these challenges, this paper proposes MUTA.
First, MUTA builds an MTL neural network where tasks share
multiple layers, rather than deploying multiple independent
models supporting different management tasks. This approach
is both resource-efficient and more accurate than single-task
models (§VI-C). Moreover, MUTA enhances accuracy in sce-
narios where specific tasks lack sufficient labeled data (§VI-B)
by leveraging knowledge from related tasks through shared
model parameters. Second, MUTA efficiently maps model lay-
ers and their associated weights to off-the-shelf programmable
switches using a novel deployment methodology, enabling
non-binarized MTL neural network inference in the data-plane
without hardware modifications (§V). In summary, we make



the following contributions:

o« We introduce MUTA, an intelligent architecture that
performs multiple management tasks using MTL models
in the data-plane. MUTA generates a quantized MTL
model suitable for deployment in the data-plane.

e« We design a non-binarized multi-task neural network
model that ensures efficient utilization of limited re-
sources in data-planes and retains high accuracy when
processing multiple tasks simultaneously.

o We present a novel mapping methodology for deploying
the MTL model in the data-plane. To increase scalability,
model’s layers can be further distributed across multiple
switches, with each layer’s computations executed using
match-action tables.

We evaluate the proposed solution using two use cases,
showing that MTL can improve the accuracy of tasks with
insufficient labels. The evaluation of MUTA on Intel Tofino
switches shows that MUTA reduces memory usage by x10.5
compared to single-task models, while maintaining line-rate
throughput and sub-microsecond latency.

IT. RELATED WORK
A. Programmable Data-Plane

The Protocol-Independent Switch Architecture (PISA) [3]
enables data-plane programmability, empowering fast innova-
tion of networking designs. In a PISA pipeline, a packet is first
mapped into a packet header vector (PHV) by a parser. The
PHYV is then passed to a match-action pipeline for algorithm
execution and data manipulation. The pipeline consists of
match-action tables arranged in a sequence of logical stages.
Finally, the processed PHV is assembled into a set of ordered
headers and payload by the deparser.

While PISA supports simple operations like addition, shift
and bitwise operations, complex instructions like floating-point
operation, matrix multiplication and loops are not supported.
Furthermore, hardware switches are resource constrained, with
only tens of megabytes of memory and a restricted number of
processing stages [4].

B. Multi-Task Learning

Multi-task learning (MTL) is a machine learning training
paradigm in which a shared model simultaneously learns
multiple tasks under the assumption that the tasks are not
completely independent and one can improve the learning of
another. MTL can use either hard parameter sharing, where
some parameters of the deep learning models are shared
among tasks while others are task-specific, or soft parameter
sharing, where separate models for each task have their own
parameters but are regularized to encourage similarity [10].
In this work, we adopt the hard parameter sharing approach
as it is simple and efficient. Compared to the single-task
case, where each individual task is solved separately by its
own model, such multi-task models have several advantages.
First, their inherent layer sharing leads to a reduced memory
footprint. Second, their resource efficiency is high, as they
avoid repetitive features calculation in the shared layers.

. Model
Mulu-ta§k |:> Trgfifinys eimé] |:> |:> Each
Model Builder Ouantization Mapping Layer

O 5

(k)=
Task 2

Layer @ Information

Device Resources Deployment|  Deployment Each
Network Config. = Orchestrator = Decision = Node
m Labeled = @ @
datasetf.»’ —
7 e =200 SN
£ Switch % g % Compil
Control &~ . z ; gress =, Lomptie
Plane / DataPlane Switch & Load

Fig. 1: MUTA architecture.

C. In-Network Neural Network Solutions

The implementation of Binary Neural Networks (BNNs) in
the data-plane has been explored using commodity SmartNICs
(e.g., N3IC [7]), and software switches (e.g., Qin et al. [8]).
These works binarize both the weights and the activations
of a Multi-Layer Perceptron (MLP) model. The forward
propagation in fully-connected layers is then executed using
XNOR operations and customized population count (popcnt)
operations [7, 8]. Following this approach, MARTINI [12]
implements BNN-based MTL models in software switches.
However, it has not been proven successful that these so-
lutions can be effectively integrated into commercial switch
Application-Specific Integrated Circuits (ASICs) while main-
taining acceptable performance and scalability.

For higher precision in-network neural networks, INQ-
MLT [13, 14] implements non-binarized neural networks for
targets supporting multiplication operations (e.g., software
switches [15]), and not for switch ASICs. Orthogonal to the
above solution, Taurus [11] leveraged chip modification to
introduce map-reduce support for neural network inference.

Our proposed work distinguishes itself from existing solu-
tions by implementing a non-binarized MTL neural network
in the data-plane and demonstrating its feasibility on a switch
ASIC (Intel Tofino) without requiring any modifications to the
hardware or memory architecture of existing switches.

III. AN OVERVIEW OF MUTA

MUTA combines control-plane and data-plane components.
As shown in Fig. 1, the control-plane is responsible for build-
ing and training a multi-task neural network model for network
management applications. The trained model is offloaded to
the data-plane in a distributed manner. The control-plane
periodically collects monitored traffic data from the data-plane
and uses it to retrain the model.

Traffic data is labeled in the control-plane (e.g., manually)
based on an application’s objectives. The labeled data is used
by the multi-task model builder to create appropriate models.
After the model is built, the model training and quantization
module generates a quantized MTL model, with parameters
prepared for mapping the inference to the data-plane (§IV).

Once the quantized MTL model is obtained, it is fed into
the model mapping module to generate the data-plane P4 code.
The module first splits the model layer by layer, extracting
the weights from each layer, and recording the dependencies



Fig. 2: Proposed multi-task learning architecture.

between layers. Subsequently, it produces P4 code for each
layer, mapping the model inference to match-action tables
in accordance with the extracted weights. The intermediate
computation results are stored in the packet headers and passed
sequentially to subsequent switches, enabling the network
to perform layer-by-layer inference. The final prediction is
obtained at the switch hosting the output layer (§V).

A deployment orchestrator is used to provide a recom-
mended deployment of the generated P4 code of the MTL
model across the entire network, supporting multi-path net-
work typologies and ensuring full paths coverage. Distributed
in-network computing techniques, such as those proposed in
DINC [16], can be used to provide the deployment decisions.

IV. MULTI-TASK MODEL TRAINING AND QUANTIZATION

To concurrently execute multiple network management
tasks, we adopt a structured approach that leverages shared
feature representations to construct a multi-task model, be-
cause many network management tasks share underlying traf-
fic characteristics and patterns (e.g., packet size distribution).

A. Model Architecture and Training

The overall architecture of our multi-task model is illus-
trated in Fig.2. The initial layers of the multi-task neural
network share common feature representations and are jointly
used to execute different tasks. For the output layer, each task
has its own dedicated task-specific layer, which uses the shared
representation to produce task-specific outputs. Suppose we
aim to train a neural network to simultaneously perform N
management tasks. For each task ¢ € {1,2,---, N}, there is
an associated loss function £; and a task-specific output y;.
The objective of the MTL approach can be formulated as:

N
arg min Alﬁz s Ai (1)
gmi ; (i, 9i)
where ¢j; denotes the true label for task . A; denotes the weight
assigned to the loss of task ¢, indicating the relative importance
of the task. The model parameters 6 (i.e., weights and bias)
are iteratively updated by back-propagation to minimize the
loss function, using a combined direction derived from the
gradients of each task.

B. Quantization

As data-planes cannot perform floating-point (FP) opera-
tions, the weights of the MTL model are restricted to fixed-
point representations when stored in the data-plane. Therefore,

we employ a quantization technique to transform the FP-based
model to a quantized model which represents weights and ac-
tivations using more compact format (e.g., 8-bit integers) [13].
Applying quantization to a trained model may introduce
a perturbation to the trained model parameters, significantly
reducing the model accuracy. To mitigate this, we employ
quantization-aware training (QAT) [13]. As depicted in Fig.2,
we add quantization nodes, which are sequences of quanti-
zation and de-quantization operations stacked together. This
process simulates low-precision inference time computation in
the forward pass of the training process, thereby introducing
the quantization-induced errors to the training phase and
mitigating the effect of quantization on overall accuracy.

V. MAPPING MODELS TO SWITCHES

In this section, we describe the implementation of the MTL
model within the programmable data-plane. Deploying the
entire model within a single switch limits scalability, especially
for deeper models, so we decompose the model into individual
layers and distribute computations across multiple switches.
Each layer is implemented as a P4 program following PISA
and assigned to a switch. Fig. 3 illustrates the mapping
of a layer’s computations to a set of match-action tables.
Intermediate layer results are then forwarded to subsequent
switches, enabling layer-by-layer inference of the entire model.

A. Data-Plane Mapping Methodology

1) Layer Inference in a Single Switch: The computations
within a neural network layer require multiple multiplication
and addition operations. Given that switch ASICs do not
inherently support multiplication operations, we replace these
operations using match-action tables. These tables are used
to store precomputed mappings between input values and
the corresponding intermediate results, effectively replacing
multiplications with table lookups.

For example, the triggering of each layer, requires a vector-
matrix multiplication operation between the input vector x =
(z1,- - ,x,) and the layer weight matrix W = [w,,,,] of size
n X m, followed by adding the bias vector b = (b1, -+ ,by,),
resulting in the output vector y= xW + b. However, directly
using a single match-action table to enumerate all possible
combinations of inputs would result in an impractically large
table, making implementation on a single switch infeasible.
Therefore, we employ smaller match-action tables, dedicating
one table to each input variable.

For an input z;, the training process provides bias and
weights that are constant during the inference process. A small
match-action table is then used to store the output dimensions
(x;w1i, Xiwa;, - -+, Wy, ) for all possible values of inputs ;.
The addition of bias can be integrated into any one of these
tables, such as Table 1 in Fig.3. The looked-up intermediate
values are then used for addition operations that generate
output vector y (i.e., the element-wise sum of vectors from
all match-action tables). For an input vector of size n, the
switch utilizes n match-action tables to perform the vector-
matrix multiplication. Once the output vector is obtained, the



Table 1 Table 2 Stage O Stage 1 Stage 2 Stage 3 Parallel Execution
Key: value x1 Key: value x2 R1=Table 1 + Table 2 + Table 3 Out = R1 + R2
Output: by + xwyq Output: x, W, R2 =Table 4 + Table 5 + Table 6 -
g = Faam X2W22 Sequential Execution Stage 4 Stage 5
by + x1Wia X2Wima Out =Tab. 1 + Table 2 + Table 3 + Table 4 | + Table 5 | + Table 6 |
Input vector \ Layer computation Output vector Trained
q‘iq, NN
X1 Y1 =| b1 +x3wiq | +| XoWip |+t X aWinog + XpWin Y1 ﬁt‘q.
X2 Y2 =| bz +x1wa1 |+ | X2W2z |+ Xp_qWono1 + XnWan Y2 ﬁhﬁ‘:ﬁi‘hﬁhﬂh‘h
Xn Ym=| bm + X1Wma1| +| X2Wmz |+ - + Xn_1Wmn—1 + XnWmn Ym . \,,,,_ I ﬁh‘*
. l l O a S-S
[ Stage O Stage 1 —
[ 1 [ =] [ i[=] [— L =] T PISA Architecture
Pkt In}j (@3 [ =] |‘ 1> [ = L =] N |‘ 1B Pkt Out (Programmable Data Plane)

Fig. 3: Methodology for mapping layer computation to a match-action pipeline.

clamping function required by the quantization, implemented
using if-else conditional statements, ensures each element’s
value falls within the bit-width range (e.g., uint8 range
is [0,255]). The resulting output vector is written into the
outgoing header, and serves as the input for the next switch.

2) Complete Model Execution Across Switches: Once a
switch completes its assigned layer computation, it encap-
sulates the results in packet headers and forwards them to
the next switch. The subsequent switch parses the headers,
retrieves the intermediate data, and uses it as input for its
assigned layer computations, enabling scalable deployment of
MTL models across the data-plane.

When a packet arrives at the switch deploying the output
layer, the final prediction result is generated after applying
the activation function. Binary classification using a sigmoid
activation function can obtain the label by comparing the
output value to the quantized value corresponding to 0.5 using
conditional statements. For a multi-class classification prob-
lem, using a ternary matching table provides better scalability
for numbers comparison (i.e., the argmax operation) [17].

B. Minimizing Stage Consumption

The above description illustrates the concept of the process
as a sequence of computations. However, directly implement-
ing this in the pipeline can be highly inefficient and potentially
unfeasible; Sequential dependencies between operations lead
to a series of stages used on the switch, where each match-
action table consumes a processing stage within the pipeline,
and metadata (stored in the PHV and initialized per packet)
is used to pass shared information between stages. This se-
quential approach is wasteful, leading to an excessive number
of processing stages dependent on the number of inputs (e.g.,
features in the first layer). To overcome this constraint, we
minimize stage consumption through parallel execution, as
illustrated in the upper right corner of Fig. 3.

As a simple example, assume an input vector of size 6. In
a traditional sequential execution, the elements of the input
vector are processed one after the other, using a total of 6
stages. In contrast, a parallel execution allows to look up inputs
in two or more tables in the same stage. This is achieved
by dividing the input vector into two (or more) parts and
processing them simultaneously. In this example, the first three
elements (Table 1, Table 2, and Table 3) and the last three

elements (Table 4, Table 5, and Table 6) of the input vector
are processed in parallel in the first three stages. This parallel
computation produces two intermediate results (R1 and R2).
In the final stage, these two intermediate results are combined
to produce the final output. Thus, a computation that required
6 stages in a sequential approach is now completed in just
4 stages. This not only saves stages, but also enhances the
efficiency and reduces the latency of the computation process.

VI. PERFORMANCE EVALUATION
A. Use Cases

Video Streaming QoE: Traffic patterns can be utilized
to infer the Quality of Experience (QoE) for video streaming
applications. Predicting QoE directly in the data-plane enables
faster content delivery and real-time adaptation for video
traffic. We use the dataset provided by [18] to tackle four
tasks, i.e., video resolution, re-buffering occurrence, startup
delay, and video bit-rate prediction. This dataset applies a
simple binary classification into high (> 700p) or low average
resolution, existing (true) or non-existing (false) stalling, short
(< 5 s) or long startup delay, and high (> 500 kbps) or
low average bit-rate. Resolution prediction is considered as
the hard-to-label task in this use case.

Network Traffic Characteristics: Accurate prediction of
traffic characteristics in the data-plane is crucial for efficient
routing and load balancing. We use QUIC dataset [19] cap-
tured at University of California at Davis. It contains QUIC
traffic of 5 Google services: Google Docs, Google Drive,
Google Music, YouTube, Google Search. We tackle four tasks,
i.e., bandwidth, duration, flow size, and traffic class prediction
tasks. We formulate the bandwidth and duration prediction
problem as a multi-class classification task by dividing the
bandwidth and duration values into five classes based on [9].
For flow size prediction, we classify the flows that belong to
the top 20% as elephant flows, while the other flows are mice.
Traffic class prediction is considered the hard-to-label task.

B. Multi-Task Model Performance

1) Setting and Training: The model employed for QoE
prediction includes two hidden layers, each containing 8
nodes. The model used for traffic characteristics prediction
has a slightly larger architecture, consisting of two hidden
layers with 14 nodes each, to handle the complexity of the



1.0 1.0
772 lisy(DT) = een
Y Single-Task NN
o Single-Task NN [ X3 MUTA
g09 &z MUTA 509 i
@ % a zzj
— | — RN
uw 0.8 :::1 uw 0.8 :::j g N
o o% o o b
2 K 3 N
= o34 | ;s = %
0.7 % 0.7 % 1
2 94 7 S % 7!
o3 o34 8
0.6 o3¢ 0.6 o3 b
& & b
Stalling Startup Avg Avg Class Flow Bandwidth
Delay Resolution Bitrate Size

(a) QoE prediction (b) Traffic characteristics prediction

Fig. 4: Performance comparison between IIsy (DT), single-task neural network
(NN), and MUTA, using only 100 samples for hard-to-label tasks (resolution
prediction and traffic class prediction) during training.

—&— lIsy(DT)

g 0.9 Single-task NN g 09
3 —— MUTA &
208 o8
50.7 i/}*// 50'7 i % lisy(DT)
o 9] Single-task NN
206 206 —F— MUTA

102 108 102 10°

Number of Labeled Training Samples Number of Labeled Training Samples

(a) Resolution prediction task in QoE (b) Traffic class prediction task in traf-
prediction fic characteristics prediction

Fig. 5: Performance comparison for hard-to-label tasks across different
numbers of labeled training samples.

1.0

=
=)

o
©
o
©

NN
X%
(T

OO
%

o
©
o
©

oeteSetetet

o
N
o
N

Weighted F1-score
Weighted F1-score

oteSete%es

SSAN
%2

D
%% %%

o
o
o
o

%%

Stalling

Duration

b
Startup Av Class

S

Vg
Delay Resolution Bitrate

(a) QoE prediction (b) Traffic characteristics prediction

Fig. 6: Performance comparison of the floating-point model (FP), quantized
model without QAT (No QAT), and MUTA.

multi-class classification task. During training, we multiply
the input of task-specific layer to a mask vector to prevent
back-propagation from this task for data samples that do not
have a label. The depth of all decision tree models for the two
use cases is set to 6.

The model training, validation, and quantization operations
are performed by the control-plane using TensorFlow Lite. For
each use-case, the dataset is split into training (80%) and test
(20%) sets. The weighted Fl-score is used to evaluate the
performance. All results are reported on the test set, and the
performance is checked using 5-fold cross-validation.

2) Results: As illustrated in Fig. 4, MUTA outperforms
decision trees (DTs) and single-task NNs for hard-to-label
tasks in both use-cases, where only 100 labeled samples are
available for training. For instance, in the resolution prediction
task, MUTA improves the Fl-score by 4.17% compared to
single-task NNs and by 9.14% compared to DTs. The large
amount of data available for the other three tasks improves
the training process by allowing the model parameters to be
trained with such abundant data. There is no significant per-
formance difference between single-task models and MUTA

for the other three tasks because there are abundant training
data for these tasks. This result demonstrates that MUTA
can improve the performance of hard-to-label tasks without
affecting the performance of other tasks.

Fig. 5 illustrates the performance of three schemes across
different numbers of labeled training samples for hard-to-label
tasks. As shown, MUTA consistently outperforms both DT
and single-task NN schemes when the number of available
labeled samples is limited. For the resolution prediction task,
MUTA with only 100 labeled samples achieves almost the
same performance as single-task models with more than 5000
labeled samples. This is attributed to MUTA’s ability to reduce
the need on labeled data for hard-to-label tasks. By learning
shared representations, MUTA effectively transfers knowledge
across tasks, thereby improving the performance of tasks with
limited labels. As the number of labeled samples increases,
the performance gap between the methods decreases.

Fig. 6 presents the effect of quantization on accuracy loss for
MUTA compared to quantized models without Quantization-
Aware Training (QAT), using floating-point models as the
baseline. All three schemes have the identical structure. For
both use cases, the quantized model without QAT suffers from
significant performance loss due to the perturbation of trained
parameters during quantization, resulting in severe accuracy
degradation. Using QAT, MUTA demonstrates a much smaller
performance degradation, highlighting QAT’s effectiveness in
mitigating accuracy loss during the quantization process.

C. Hardware Resource Consumption

1) Setting and Metrics: We implement the MTL model
using P44 targeting Tofino Native Architecture (TNA) used in
Intel Tofino switch ASIC. For resource consumption, we focus
on the following three aspects: 1) Program resources, i.e., the
number of stages, and table entries; 2) Memory resources, i.e.,
the percentage of used SRAM and TCAM; 3) The metadata
used to execute action functions. The results are reported for
the QoE prediction use case. MUTA is compared to two ad-
vanced tree-based solutions, i.e., the feature-encoding solution
(e.g., lIsy [6]) and the direct mapping solution (e.g., pForest
[5]). However, the tree models using direct mapping failed
to compile due to extremely high pipeline-stage consumption.
Consequently, we report results only for tree models using the
feature-encoding solution (i.e., IIsy [6]).

2) Results: Table I presents the resource consumption of
IIsy for each individual task, and the cumulative consumption
for all four tasks combined. Similarly, Table II details the
resource utilization of MUTA across each layer of the neural
network. Importantly, TCAM is utilized only in the first layer
of the MTL model, for the range-based match type used in
the match-action table at this layer. Subsequent layers employ
exact match tables exclusively. Compared to IIsy, MUTA
consumes significantly lower memory resources, especially
for SRAM, reduced from 197.82% to 18.845% utilization.
Moreover, MUTA reduces stage consumption, requiring only
17 stages to execute all tasks, fitting within a Tofino2 switch
(20 stages available) or use the proposed distributed execution



TABLE I: Resource Consumption for IIsy (DT): T1 - Stalling Prediction, T2 -
Startup Delay Prediction, T3 - Resolution Prediction, T4 - Bitrate Prediction.

T1 T2 T3 T4 Total
SRAM(%) 23.23 56.67 89.48 28.44 197.82
TCAM(%) 2.431 2.431 2.431 2.431 9.724
Stage 4 8 12 5 29
Table Entries 421874 | 940243 | 1490240 | 526208 | 3378565
Metadata (bytes) 19 35 51 23 128
TABLE II: Resource Consumption for MUTA.
Layerl | Layer2 | Layer3 | Total
SRAM(%) 2.178 10.00 6.667 18.845
TCAM(%) 6.250 0 0 6.250
Stage 6 6 5 17
Table Entries 1560 2048 2048 5656
Metadata (bytes) | 260 292 128 680

across multiple Tofino switches (12 stages available). In con-
trast, IIsy needs 29 stages to complete four tasks. However,
MUTA incurs 5.3 times the metadata usage due to the par-
allel execution of multiple match-action tables. These results
indicate that, at the cost of increased metadata consumption,
MUTA improves memory and stage efficiency relative to Ilsy.

D. Latency and Throughput

We report our measurements of pipeline latency of each
layer relative to switch.p4, an L2/L3 reference switch program
for Tofino, as the latency of Tofino is under NDA. MUTA’s
relative pipeline latency is computed based on data reported by
SDE. As shown in Fig. 7 (a), the latency for all layers is less
than 33% of switch.p4. This illustrates that even under resource
constraints, MUTA still can achieve comparable latency (at the
sub-microsecond level) to simple packet switching. As shown
in Fig. 7 (b), all layers can achieve a full line-rate of 6.4Tbps.

VII. DISCUSSION

Model update: After an MTL model is deployed, it is
essential to periodically update it, adapting to changes in traffic
patterns. There are two update scenarios: updating model
weights and model structure modification. Updating model
weights can be done at runtime, as it only requires entry
updates in match-action tables, and these can be done atomi-
cally without affecting the forwarding pipeline. Modifying the
model structure requires stopping traffic during the update.

Scalability: The scalability of MUTA is improved by dis-
tributing MTL model layers across multiple switches. This
strategy enables effective management of the computational
load and facilitates model expansion as necessary. The max-
imum number of model layers depends on the number of
switches available on a given path. In terms of layer size, using
Tofino, each switch can handle a layer of 16x16. Tofino2 can
manage larger layers, as it supports more stages and memory
resources than the Tofino chip we utilize.

VIII. CONCLUSION

In this paper, we introduced MUTA, a novel in-network
solution for multi-task learning (MTL). MUTA enables the
efficient execution of multiple network management tasks us-
ing a shared model. The proposed mapping scheme effectively
maps MTL model layers into match-action tables and achieves
complete model execution in the data-plane. Experimental

o

lsy
MUTA
Switch.p4

IS

N

—— Tofino Line Rate

Relative Latency (%)
Throughput (Tbps)

TI T2 T3 T4 layerllayer2layer3 ref
sw

0
itch Layerl Layer2 Layer3

(a) R-Latency. (b) Throughput (Tbps).
Fig. 7: (a) Pipeline Relative Latency (R-Latency) on Tofino for DTs, different
layers in MUTA, and standalone switch.p4. (b) Throughput for each layer.

results demonstrate that MUTA enhances performance for
tasks with limited labeled data, while maintaining resource
efficiency and operating at line-rate.

IX. ACKNOWLEDGMENTS

This research was supported in part by EU Horizon Smart-
Edge (101092908, Innovate UK 10056403), VMWare, and
the Natural Sciences and Engineering Research Council of
Canada (NSERC). For the purpose of Open Access, the
author has applied a CC BY public copyright license to any
Author Accepted Manuscript (AAM) version arising from this
submission.

REFERENCES

[1] R. Boutaba et al. “A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities”. In:
Journal of Internet Services and Applications 9.1 (2018), pp. 1-99.

[2] M. Wang et al. “Machine learning for networking: Workflow, advances
and opportunities”. In: leee Network 32.2 (2017), pp. 92-99.

[3] P. Bosshart et al. “P4: Programming protocol-independent packet pro-
cessors”. In: ACM SIGCOMM CCR 44.3 (2014), pp. 87-95.

[4] C. Zheng et al. “In-network Machine Learning Using Programmable
Network Devices: A Survey”. In: IEEE Commun. Surveys & Tuts (2023).

[5] C. Busse-Grawitz et al. “pforest: In-network inference with random
forests”. In: arXiv preprint arXiv:1909.05680 (2019).

[6] C. Zheng et al. “IIsy: Hybrid In-Network Classification Using Pro-
grammable Switches”. In: IEEE/ACM ToN (2024).

[71 G. Siracusano et al. “Re-architecting traffic analysis with neural network
interface cards”. In: USENIX NSDI. 2022, pp. 513-533.

[8] Q. Qin et al. “Line-speed and scalable intrusion detection at the network
edge via federated learning”. In: IFIP Networking. 2020, pp. 352-360.

[9] S. Rezaei and X. Liu. “Multitask learning for network traffic classifica-

tion”. In: 2020 29th ICCCN. IEEE. 2020, pp. 1-9.

S. Ruder. “An overview of multi-task learning in deep neural networks”.

In: arXiv preprint arXiv:1706.05098 (2017).

T. Swamy et al. “Taurus: a data plane architecture for per-packet ML”.

In: ACM ASPLOS. 2022, pp. 1099-1114.

S. Yoon et al. “Multi-task Aware Resource Efficient Traffic Classification

via in-Network Inference”. In: Proceedings of the 2024 SIGCOMM

Workshop on Networks for AI Computing. 2024, pp. 69-74.

K. Zhang et al. “A Machine Learning-Based Toolbox for P4 Pro-

grammable Data-Planes”. In: JEEE TNSM (2024).

K. Zhang et al. “An intelligent data-plane with a quantized ml model

for traffic management”. In: NOMS 2023. IEEE. 2023, pp. 1-9.

The Reference P4 Software Switch. https : // github . com / p4lang /

behavioral-model. Accessed: 2024-07-22.

C. Zheng et al. “DINC: Toward distributed in-network computing”. In:

Proceedings of the ACM on Networking 1.CoNEXT3 (2023), pp. 1-25.

[17] J. Yan et al. “Brain-on-Switch: Towards Advanced Intelligent Network

Data Plane via NN-Driven Traffic Analysis at Line-Speed”. In: USENIX

NSDI. 2024, pp. 419-440.

M. Seufert and I. Orsolic. “Improving the Transfer of Machine Learning-

Based Video QoE Estimation Across Diverse Networks”. In: IEEE

TNSM (2023).

S. Rezaei and X. Liu. “How to achieve high classification accuracy with

just a few labels: A semi-supervised approach using sampled packets”.

In: arXiv preprint arXiv:1812.09761 (2018).

(10]
(11]
[12]

[13]
[14]
[15]

[16]

[18]

[19]



