
1

OSNT: Open Source Network Tester
Gianni Antichi†‡‡, Muhammad Shahbaz‡‡‡, Yilong Geng∗‡‡, Noa Zilberman† Adam Covington∗,

Marc Bruyere¶∥∗∗, Nick McKeown∗, Nick Feamster‡, Bob Felderman††, Michaela Blott§, Andrew W. Moore†,
Philippe Owezarski¶∥,

∗Stanford University †University of Cambridge ‡Georgia Tech §Xilinx ¶Université de Toulouse ∥CNRS,LAAS
∗∗DELL ††Google ‡‡These authors contributed equally to this work

Abstract—Despite network monitoring and testing being criti-
cal for computer networks, current solutions are both extremely
expensive and inflexible. Into this lacuna we launch the Open
Source Network Tester (OSNT), a fully open-source traffic
generator and capture system. Our prototype implementation on
the NetFPGA-10G supports 4×10Gbps traffic generation across
all packet sizes and traffic capture is supported up to 2×10Gbps
with naı̈ve host software. Our system implementation provides
methods for scaling and coordinating multiple generator/capture
systems and supports 6.25ns timestamp resolution with clock drift
and phase coordination maintained by a GPS input. Additionally,
our approach has demonstrated lower-cost than comparable com-
mercial systems while achieving comparable levels of precision
and accuracy; all within an open-source framework extensible
with new features to support new applications, while permitting
validation and review of the implementation.

Index Terms—Open Source, Programmable Hardware, High
Speed, NetFPGA, Monitoring, Traffic-generation, Open Source,
Packet-Capture and Packet-Sniffing.

I. INTRODUCTION

COMPUTER networks are the hallmark of 21st Century
society and underpin virtually all infrastructure in the

modern world. Consequently, society relies on the correct op-
eration of these networks. To achieve compliant and functional
equipment, effort is put into all parts of the network-equipment
lifecycle. Testing validates new designs, equipment is tested
throughout the production process and new deployments are
rigorously tested for compliance and correctness. In addition,
many owners of network equipment employ a relentless bat-
tery of testing and measurement to ensure the infrastructure
operates correctly.

The continuous innovation that is such a desirable property
of the Internet has also led to a dilemma for network testing.
For a typical piece of new networking equipment there will
be a multitude of related IEEE standards and standards-track
IETF RFCs, each one requiring test cases to ensure correctness
for network-equipment. This has led to a multi-billion dollar
industry in network test equipment giving rise to companies
such as Ixia, Spirent, Fluke, and Emulex/Endace among others.

However, such equipment has evolved with a number of
undesirable characteristics: commonly closed and proprietary
systems with limited flexibility well outside the reach of
most universities and research laboratories. Even a modest
two port 10GbE network tester capable of full line-rate costs
upward of $25,000 and adding support for additional proto-
cols, large numbers of TCP streams, and non-trivial traffic
profiles quickly increases this price. This has been the case

for two reasons. Firstly, network test equipment capable of
full-line rate with high-precision timestamping is a significant
engineering challenge, leading to state-of-the-art and specialist
physical components. Secondly, test equipment is often devel-
oped simultaneously with early prototype network equipment.
Thus, modest numbers of units sold mean an expensive and
slow time to develop test hardware and software.

This slow development cycle and high expense opens an
opportunity for an open-source network tester. It is no longer
necessary to build network testers on top of specialized, pro-
prietary hardware. There are multiple open-source hardware
platforms with the potential for line-rate across many 10GbE
ports, for example, the NetFPGA-10G1, Xilinx VC7092 and
Terasic DE5-Net3. Each of these fully-reprogrammable cards
purports being capable of running at line-rate. For example, the
NetFPGA-10G has 4×10GbE interfaces, is based on a Xilinx
FPGA, and is available to the research and teaching commu-
nity for less than $2,000 including firmware and software.

We therefore present the Open-Source Network Tester
(OSNT4), primarily for the research and teaching community.
Such a tester needs to be able to achieve full line-rate, provide
sufficiently accurate timestamping and be flexible enough to
allow new protocol tests to be added to the system. We
believe that, as an open-source community grows, a low-cost
open-source network tester will also prove valuable to the
networking industry. We also envisage the enabling of new
testing and validation deployments that are simply financially
impractical using commercial testers. Such deployments may
see the use of hundreds or thousands of testers, offering
previously unobtainable insights and understanding.

In this paper we present an architecture for OSNT, describe
our first prototype based upon the NetFPGA open-source hard-
ware platform, and present early-day benchmarks illustrating
the tester in operation. OSNT is portable across a number
of hardware platforms, maximizing reuse and minimizing
reimplementation costs as new hardware, physical interfaces
and networks become available. By providing an open-source
solution we invite everyone from the community to audit (and
improve) our implementation as well as adapt it to their needs.

1http://www.netfpga.org
2http://www.xilinx.com/products/boards-and-kits/EK-V7-VC709-CES-G.

htm
3http://www.de5-net.terasic.com
4http://www.osnt.org

2

II. RELATED WORK

Network testers, and open-source network testers are not
new; uniquely, OSNT brings the incorporation of designs that
operate intimately with the hardware. Our efforts ride the
established tradition of network measurement and testing that
exists in the network research and academic communities.

A small sample of open-source and community projects
include: Iperf [1] and later Netperf [2], developed to provide
performance tests of throughput and end-to-end latency. Traffic
loads from previously captured pcap files could be transmitted
using Tcpreplay [3]. Netalyzer [4] uses bespoke server and
client infrastructure to measure many aspects of Internet
performance and behaviour. Swing [5] provided a closed-
loop traffic generator: first monitoring and characterizing,
and then regenerating system load replicating the measured
characteristics. Early attempts at both flexible and feature-
rich traffic generation led to the Ostinato [6] traffic generator.
The netmap [7] achieves near-optimal host throughput but
is still restricted by the underlying hardware for timestamps,
traffic-shaping and maximum-rate capacity. A final example,
Bonelli et al. [8] describe a near-line-rate traffic on a 10Gbps
link that uses multi-core multi-queue commodity hardware,
albeit without the flexibility or guarantee of full line-rate
throughput, precise traffic replay timing and sufficient packet
capture timestamp accuracy and precision.

Commercial network testers are provided by a number of
companies: Ixia and Spirent dominate, but other test equipment
manufacturers also have network-test offerings. Despite their
ability to perform at high line-rate, a criticism common to all
these systems is the cost and inflexibility. Supporting newly-
designed protocols is often expensive while supporting newly-
designed physical line standard can result in an entirely new
system.

In the measurement community the ubiquitous pcap pro-
gram, tcpdump, has been the tool of choice for network
capture. However, capture-system performance (and rates of
loss) are dictated by the underlying host: a combination
of hardware, operating-system, device-drivers and software.
Additionally, it is rare for these software systems to provide
any common clock across the captures, making end-to-end
latency measurements complicated and inaccurate. There have
been software/hardware efforts in the past that incorporate
GPS-coordinated high-precision hardware timestamps and use
device-driver designs intended to mitigate loss under load [9].
However, this work was limited to 1GbE and serves now
only to provide a motivating example. NTP is a mature
time synchronization method; however, it can only achieve
an accuracy better than 1ms under limited conditions [10];
making it unsuitable for high precision traffic characterization.

In contrast to the large range of commercial offerings
available to generate traffic; the high-precision capture market
has few commercial systems and is dominated by the Endace
DAG card.

Several previous NetFPGA-based projects using the previ-
ous generation NetFPGA 4×1GbE platform have also pro-
vided traffic-generation [11] and traffic-monitoring [12]. The
architecture of OSNT has been heavily informed by the

designs, limitations and experience with these systems.

III. THE OSNT ARCHITECTURE

The OSNT architecture is motivated by limitations in past
work: closed-source/proprietary solutions, high costs, lack of
flexibility, and the omission of important features such as
timestamping and precise packet transmission. Alongside flex-
ibility there is a need for scalability; while our prototype work
has focused on single-card solutions, our desire to reproduce
real operating conditions means we must have a system that
can test beyond single network elements; a production network
needs be tested as close as possible to its real operating
conditions — this means the OSNT system must also be able
to recreate such real operating conditions.

From the outset it has been obvious that flexibility must be
a key part of the OSNT approach. This flexibility is needed
to accommodate the variety of different uses for OSNT. Four
distinct modes of use have become clear.

• OSNT Traffic Generator: a single card, capable of gener-
ating and receiving packets on four 10GbE interfaces. By
incorporating timestamps into each outbound packet, in-
formation on end-to-end delay and loss can be computed.
Such a system can be used to test a single networking
element, e.g., switch or router, or a network encompassed
within a sufficiently small area that different inputs and
outputs from the network can be connected to the same
card.

• OSNT Traffic Monitor: a single card, capable of capturing
packets arriving through four 10GbE ports, transferring
them to the host software for analysis and further process-
ing. Alongside a range of techniques utilized to reduce
the bottleneck of PCIe bandwidth (packet-batching, ring-
receivers and pre-allocated host system memory), packets
are optionally hashed and truncated in hardware. The card
is intended to provide a loss-limited capture system with
both high-resolution and high-precision timestamping of
events in a live network.

• Hybrid OSNT system: our architecture allows the com-
bination of Traffic Generator and Traffic Monitor into
single FPGA device and single card. Using high-precision
timestamping of departing and arriving packets, we can
perform full line-rate, per-flow characterization of a net-
work (device) under test.

• Scalable OSNT system is our approach for coordinating
large numbers of multiple traffic generator and traffic
monitors synchronized by a common time-base to pro-
vide the resources and port-count to test larger network
systems. While still largely untested, such a coordinated
system has been a design objective from the outset.

The OSNT architecture is designed to support these needs
for network testing using a scalable architecture that can utilize
multiple OSNT cards. Using one or more synchronized OSNT
cards, our architecture enables a user to perform measurements
throughout the network, characterizing aspects such as end-to-
end latency and jitter, packet-loss, congestion events and more.

It is clear our approach must be capable of full line-
rate operation. To this end we built our prototype upon the

3

NetFPGA-10G platform — an open-source hardware platform
designed to be capable of full line-rate. We describe our
prototype implementation in section VI.

While there is a clear need that one or both of the traffic-
capture and traffic-generator cores in our OSNT system be
present in each use case; these two subsystems have orthogonal
design goals: the capture system is intended to provide high-
precision inbound timestamping with a loss-limited path that
gets (a subset of) captured packets into the host for further
processing, whereas the traffic-generator requires precision
transmission of packets according to a generator function that
may include close-loop control, (e.g., TCP) and even (partial)
application protocol implementation.

��������

��������

��������

��������

	
�����

	
���
����

��������
���

	
���
����

����
���
���

	
���
����

�������

��������

��������

��������

��������

	
�����

��������

	
�

�
����

�
	

�
����

Fig. 1: NetV - an approach for NetFPGA Virtualization.

Given we already had a proven starting design for both
generator and capture engines [11], [12], along with a keen
desire to employ component reuse, we were led to develop the
NetV approach that virtualizes the underlying hardware plat-
form5. The approach, shown in Figure 1, extends a hardware
platform such as the NetFPGA, using P2V: Physical to Virtual
and V2P: Virtual to Physical wrappers. The V2P hardware-
wrapper is a per-port arbiter that shares access among each of
the 10GbE and PCIe interface-pipelines. This permits multiple
NetFPGA pipelines within a single FPGA fabric on a single
board. In turn providing support for seamless integration of
existing pipelines with strong isolation characteristics. For
example, a traffic generator can co-exist with a high-precision
capture engine. Each pipeline is tagged with a unique ID to
ensure register accesses can be distinguished among different
pipelines. In this manner, traffic generation and monitoring can
be implemented either as standalone units or as a combined
system on a single card. Using multiple pipelines in the same
design does not affect the overall performances as long as they
do not share data structures. The only limitation is given by
the available FPGA resources.

Our design has focussed upon one particular architectural
approach; this direction was selected to maximize code reuse
at the expense of potential redundant gate-logic. Other OSNT
architectures may be appropriate but are not explored here for
sake of brevity.

5Our reference prototype is the NetFPGA, but we believe that the archi-
tecture including approaches such as NetV will be generic across a range of
hardware platforms.

IV. TRAFFIC GENERATION

The OSNT traffic generator both generates packets and
analyzes return statistics. It is designed to generate full line-
rate per card interface, and is scalable in a manner that allows
for multiple traffic generators to work in parallel within a
single OSNT environment. Traffic generation features include:

• support large number of different traffic flows
• flexible packet header specification over multiple headers
• support several standard protocols
• sufficient flexibility to test future protocols
• simulate multiple networking devices/end-systems (e.g.

routers running BGP)
• allow timestamping of in and out-bound packets
• allow per-packet traffic-shaping
• statistics gathered per-flow or flow-aggregate
• support for negative testing through malformed packets
In addition to the above features, OSNT can be customized

to support different protocols, numbers of flows and many
other features in each given application context.

Figure 2 illustrates the high-level architecture of the traffic
generation pipeline. The center of the pipeline is a set of
micro-engines, each used to support one or more protocols at
network and transport-layers such as Ethernet, TCP or UDP
and application-protocols such as BGP. Each micro-engine
either generates synthetic or replays captured traffic for one
or more of the selected egress interfaces. A basic micro-
engine is a simple packet replay: a set of pre-defined packets
are sent out a given number of times as configured by the
software. Each micro-engine contains three building blocks:
Traffic Model (TM), Flow Table (FT) and Data Pattern (DP).
The Traffic Model contains information about the network
characteristics of the generated traffic, such as packets’ size
and Inter-Packet Delay (IPD). It is a compiled list of these
characteristics, extracted by the host software and installed into
the hardware. Each parameter is software defined, permitting
arbitrary rate distribution patterns: e.g., Constant Bit Rate
(CBR) or Poisson distribution. The Flow Table contains a
list of header template values used by the micro-engine when
generating a packet. Each packet-header is defined by the Flow
Table. In this manner, multiple flows with different header
characteristics can be generated by a single micro-engine.
The micro-engine takes each header-field and manipulates it
in one of several ways before setting it: a field may remain
constant, incrementally increase, interleave, be set randomly
or algorithmically. The number of flows supported by the Flow
Table depends on the trade-off between trace complexity and
the number of fields to be manipulated. The Data Pattern
module sets the payload of a generated packet. The payload
can be set to a random pattern, or a pre-specified pattern.
A pre-specified pattern allows a user to set the payload of
packets to a unique pattern so that the user can execute specific
network tests such as continuous-jitter measurement. It also
provides in-payload timestamping of departing packets and
capabilities for debugging/validating received packets.

Packets generated by the micro-engine are sent to a per-
port Arbiter. The arbiter selects among all the packets destined
for a port from each micro-engine. Ordering is based upon

4

���

��

���

��

���

��

���

��

���	

��

�
��
�����
	�

�
�
��
��������	�
��

�	�����

��

����	�

���

���

��

���

��

���

��

���

��

���	

��

�������

�� 	�
�

�������

�� 	�
�

�������

�� 	�
�

��
��

����
��

�������

����

�� �� �� �� ��

�� �� �� �� ��

�	�����

����
	�

Legends:
DM – Delay Module
RL – Rate Limiter
TS – Time Stamp
TM – Traffic Model
DP – Data Pattern
FT – Flow Table
PIO – Programmed
input/output

�� �� �� �� ��

Fig. 2: The architecture for OSNT traffic generation system.

the required packet departure time. A Delay Module (DM)
located after the arbiter will delay packets by each flow’s Inter-
Packet Delay. A Rate Limiter (RL) guarantees that no flow
exceeds the rate assigned to it at each port. Lastly, the packet
goes to the (10GbE) MAC, from which it is transmitted to its
destination.

The traffic generator implementation can also receive in-
coming packets and provide statistics on them at either port or
flow level. This allows use of the traffic generation subsystem
as a standalone unit without an additional external capture
subsystem. To this end, packets entering the card through a
physical interface are measured, the statistics gathered and the
received packets discarded. The gathered statistics are relayed
to host software using the programmed input/output (PIO)
interface.

The traffic generator has an accurate timestamping mech-
anism, located just before the transmit 10GbE MAC. The
mechanism, identical to the one used in the traffic monitoring
unit and described in section V, is used for timing-related
measurements of the network, permitting characterization of
measurements such as latency and jitter. The timestamp is
embedded within the packet at a preconfigured location and
can be extracted at the receiver as required.

As for the software side, we provide an extensible GUI to
interact with the HW (e.g., load a PCAP trace to replay in
HW, define the per-packet inter-departure time, etc.).

V. TRAFFIC MONITORING

The OSNT traffic monitor provides four functions:
• packet capture at full line-rate
• packet filtering permitting selection of traffic-of-interest
• high precision, accurate, packet timestamping
• statistics gathering
Figure 3 illustrates the architecture of the monitoring

pipeline that provides the functionality enumerated above. The
5-tuple (protocol, IP address pair and layer four port pair)
extraction is performed using an extensible packet parser able
to recognize both VLAN and MPLS headers along with IP in

IP encapsulation. Further flexibility is enabled by extending
the parser implementation-code as required.

A module positioned immediately after the Physical in-
terfaces and before the receive queues timestamps incoming
packets as they are received by hardware. Our design is an
architecture that implicitly copes with a workload of full line-
rate per port of minimum sized packets. However this will
often exceed the capacity of the host-processing, storage, etc.,
or may contain traffic of no practical interest. To this end
we implement two traffic-thinning approaches. The first of
these is to utilize the 5-tuple filter implemented in the “Core
Monitoring” module. Only packets that are matched to a rule
are sent to the software, while all other packets are dropped.
The second mechanism is to record a fixed-length part of each
packet (sometimes called a snap-length) along with a hash of
the entire original packet. The challenge here is that if a user
is interested in all packets on all interfaces it is possible to
exhaust the host resources. We quantify the PCIe bandwidth
and the tradeoff for snap-length selection in section VII.

As for the software side, we provide a python-based GUI
that allows the user to interact with the HW components (e.g.
enable cut/hash, set filtering rules, check statistics). A C-based
application that comes with it records the received traffic
in both PCAP or PCAPNG format. This allows offline use
of common libpcap-based tools (e.g. TCPDump, Wireshark.)
These tools do not work directly with OSNT: the device driver
secures performance by bypassing the Linux TCP/IP stack. We
refer the reader to the OSNT website for further information
about the software API.

���������	����

��
�

��

��
�

��

��
�

��

��
�

��

���

���

������

����	�����	��

����

�	�����

�	�	��	����

������	��

���	����
��	�
�

������

 �	���	���

����

!��������

������

"��#�	�

���$

��	%

���&

$�	��	�������

����

����	

����������

��������	���
�

�
����
��
���

	�������

�������

��
�

�
��

�����

����

�������

�
��

��������

�
��
���

����	����

��

�

��
�

��

Fig. 3: The architecture for OSNT traffic monitoring system.

Timestamping

Providing an accurate timestamp to (incoming) packets is
a critical objective of the traffic monitoring unit. Packets
are timestamped as close to the physical Ethernet device as

5

possible so as to minimize FIFO-generated jitter and permit
accurate latency measurement. A dedicated timestamping unit
stamps packets as they arrive from the physical (MAC) inter-
faces. Each packet is appended with a 64-bit timestamp.

Motivated by the need to have minimal overhead while
also providing sufficient resolution and long-term stability,
we have chosen to use a 64-bit timestamp divided into two
parts, the upper 32-bits count seconds, while the lower 32-bits
provide a fraction of a second with a maximum resolution
of approximately 233ps; the practical prototype resolution
is 6.25ns. Integral to accurate timekeeping is the need to
correct the frequency drift of an oscillator. To this end, we
use Direct Digital Synthesis (DDS), a technique by which
arbitrary variable-frequencies can be generated using syn-
chronous digital logic[13]. The addition of a stable pulse-per-
second (PPS) signal such as that derived from a GPS receiver
permits both high long-term accuracy and the synchronization
of multiple OSNT elements. The selection of a timestamp with
this precision was a conscious effort on our part to ensure
the abilities of the OSNT design are at least as good as the
currently available commercial offerings.

VI. OSNT NETFPGA-10G PROTOTYPE

Our prototype implementation of the OSNT platform has
been on the NetFPGA-10G open-source hardware platform.
The NetFPGA system provides an ideal rapid prototyping
target for the work of OSNT. Since its original inception
as an open-source high speed networking platform for the
research and education community [14] and, through its
second-generation [15], the NetFPGA has proven to be an
easy-to-use platform. The NetFPGA project supplies users
with both basic infrastructure and a number of pre-worked
open-source designs intended to dramatically simplify a users’
design experience.

The NetFPGA-10G card, as shown in Figure 4, is a 4 port
10GbE PCIe adapter card incorporating a large FPGA fab-
ric. At the core of the board is a Xilinx Virtex-5 FPGA:
XC5VTX240T-2 device. Additionally, there are five peripheral
subsystems that complement the FPGA: four 10Gbps SFP+
Ethernet interfaces, a Gen1 PCIe subsystem provides the host-
bus adapter interface, and memory consists of a combination of
both SRAM and DRAM devices. The memories were selected
to provide minimal latency and maximal bandwidth over the
available FPGA I/Os. The fourth and fifth subsystems are
expansion interfaces and the configuration subsystem. The
board is implemented as a three-quarter length PCIe adapter,
but can also operate as a standalone unit outside the server
environment.

VII. EXPERIENCES WITH OUR PROTOTYPE

By building our prototype on the NetFPGA-10G platform
we have inherited several platform constraints. Despite having
a large FPGA device, design decisions must trade resources.
One example of this is in the sizing of TCAM tables for
filtering. Table size is traded directly against overall design
size. In our prototype implementation, the tuple-based filtering
tables is limited to 16 entries.

Fig. 4: The NetFPGA-10G board.

While the internal NetFPGA datapath has been designed to
accommodate full line-rate, minimum-sized packets, the PCIe
interface lacks the bandwidth to transmit all traffic to or from
the host. The NetFPGA-10G provides a first generation, 8-lane
PCIe implementation. This interface uses an MTU of 128 bytes
and without careful packing a naı̈ve implementation of DMA
and device driver may achieve as low as 33.5% utilization
(for transactions of 129 byte packets). Furthermore, even for
an ideal scenario this interface imposes a limit of around
13.1 Mpps for an MTU of 128 bytes or a little over 15 Gb/s.
It is clear that capture-to-host of all four interfaces when
operating at 10Gb/s into the host is not practical. Alongside
flow-filtering the traffic-thinning technique of selecting a snap-
length places a known limit on the maximum amount of data
that needs to be transferred over the PCIe to the host.

The option to add a hash of the original packet, along with
a fixed snap-length, means that we can reduce the potential
number of bytes per packet to a known upper boundary.
Although the hash adds an overhead of 128 bits per packet,
it permits practical packet identification which in turn means
we can perform end-to-end latency measurements as well as
identifying specific loss-events. The ability to do bandwidth
limiting in this way allows us to achieve a maximum rate of
approximately 21.7 Mpps provided we use non-naı̈ve DMA
and device-driver mechanisms.

Fortunately, there has been considerable progress in non-
naı̈ve DMA and device-driver mechanisms to reduce the
bottleneck of PCIe bandwidth; packet-batching, ring-receivers
and pre-allocated host system memory have all seen use in
past dedicated capture systems [9]. Recent efforts such as
netmap achieve rates of 14.8 Mpps into user-space for single
port commodity 10GbE interface cards. Our architecture is
not limited to a current hardware-implementation; the OSNT
system when running on more advanced hardware such as the
Xilinx VC709, using the third generation PCIe, has sufficient
bandwidth to support full size payloads for all four 10GbE
ports. In fact, the open-source nature of OSNT means that
having this system operate effectively on any future NetFPGA
platform, other platforms from Xilinx or indeed from other
FPGA vendors is no more complicated than the porting of
any open-source project.

Figure 5 shows the capture engine performance results. The
system has been validated for one and two ports against 100%
line utilization (packets sent back-to-back) across a range of
packet sizes. In the first case, OSNT is able to record all
received traffic, without loss, independently of packet length.

6

 0

 5

 10

 15

 20

64 128 256 512 1024

U
til

iz
at

io
n

(G
bp

s)

Packet size (bytes) - log10 scale

OSNT with 40B cut/hash 2-ports max rate (without loss)
OSNT 2-ports max rate (without loss)
OSNT 1-port max rate (without loss)

Max rate PCIe Gen1

Fig. 5: The OSNT per-packet capture engine performance for
various presented traffic loads.

Additionally, using two ports at the same time, the system is
able to record traffic without experiencing any kind of loss up
to 14 Gbps (PCIe Gen1 limitation); the impact of the cut/hash
feature at reducing traffic across the PCIe is clear.

We validated the OSNT performance against the IXIA
400T and similtaneously confirmed these results via a parallel
capture using optical-port splitters to an Emulex EndaceDAG
9.2, each equipped with 2x10G ports. IXIA provides the
capability of both generating full line rate traffic and full
line rate monitoring; permitting validation of both capture and
generation capabilities. The Endace DAG provides full line
rate capture and high-precision time-stamping and offers a
further confirmation mechanism.

Testing of the traffic-generator we were able to confirm
to our satisfaction that the OSNT Traffic Generator is able
to generate full line rate over two ports independently of
the packet length. Tests were conducted over a range of
packet-sizes with results compared directly against IXIA-
based generators. In all experiments data was generated (and
measured) on all four NetFPGA ports with a combination of
IXIA and Endace packet-capture and measurement.

VIII. CONCLUSIONS

In this paper we introduced OSNT, an open source network
tester. We described the OSNT architecture which permits a
flexible combination of multiple packet-processing pipelines
using a new virtualization technique, NetV. While the NetV
virtualization approach was designed with the NetFPGA in
mind, this technique is not bound to that hardware and should
be able to provide flexibility and versatility across a range of
uses. Using the NetV approach we showed how the OSNT
system can implement both traffic-generator and network
monitor functions. We also described our prototype imple-
mentation using the rapid-prototyping NetFPGA platform and
characterized aspects of that implementation.

The OSNT platform provides a network tester that is able to
combine desirable software flexibility with the advantages of
being built upon an open-source hardware platform. The ver-
satility of OSNT is in its suitability for a range of applications,

from the testing of single items of networking equipment to
the characterizing of large distributed networks.

The OSNT system is available to the research community
through the NetFPGA project. Any user who owns a NetFPGA
card can simply use it, with no additional hardware expense.
We envisage the project being extended and enhanced by the
research community, and users are encouraged to contribute
further features and capabilities, as well as to share their own
experience using OSNT.

The promise of OSNT is an exciting one. In the field
of network measurement alone, high-precision, loss-limited
capture has led to remarkable progress in the characterization
and understanding of the modern Internet. The OSNT traffic
monitor overcomes the two biggest issue with these capture
deployments to date — the cost and lack of flexibility — while
also, by virtue of being open-source, providing an auditable
test system that encourages repeatability in network science.

Thanks

We thank the NetFPGA community, David Fermor, Scott
Whyte and Richard Hay for inspiring and assisting with
this work. The language and form of this paper has been
improved immeasurably by feedback from Jon Crowcroft and
the anonymous reviewers. This project is jointly supported by
the NSF CRI program under contract 0855268 and by the
EPSRC INTERNET Project EP/H040536/1.

REFERENCES

[1] iperf, TCP and UDP bandwidth performance measurement tool,
http://code.google.com/p/iperf.

[2] Netperf, http://www.netperf.org.
[3] Tcpreplay, https://github.com/synfinatic/tcpreplay.
[4] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illumi-

nating The Edge Network,” in ACM Internet Measurement Conference
(IMC), 2010.

[5] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and responsive
network traffic generation,” IEEE/ACM Transactions on Networking,
vol. 17, no. 3, 2009.

[6] P. Srivats, “OSTINATO: An open, scalable packet/traffic generator,” in
FOSS.IN, 2010.

[7] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in USENIX
Annual Technical Conference (ATC), 2012.

[8] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “Flexible high
performance traffic generation on commodity multi–core platforms,” in
Traffic Monitoring and Analysis. Springer, 2012.

[9] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt, “Architecture of
a network monitor,” in Passive & Active Measurement Workshop, 2003.

[10] M. Ussoli and G. Prytz, “Sntp time synchronization accuray measure-
ments,” in IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), 2013.

[11] A. Covington, G. Gibb, J. W. Lockwood, and N. Mckeown, “A packet
generator on the NetFPGA platform,” in IEEE Symposium on Field
Programmable Custom Computing Machines (FCCM), 2009.

[12] G. Antichi, S. Giordano, D. J. Miller, and A. W. Moore, “Enabling open-
source high speed network monitoring on NetFPGA,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2012.

[13] P. Saul, “Direct digital synthesis,” in Circuits and Systems Tutorials,
1996.

[14] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “Netfpga–an open platform for gigabit-rate
network switching and routing,” in IEEE International Conference on
Microelectronic Systems Education (MSE), 2007.

[15] M. Blott, J. Ellithorpe, N. McKeown, K. Vissers, and H. Zeng, “FPGA
research design platform fuels network advances,” Xilinx Xcell Journal,
no. 73, 2010.

