Emu: Rapid FPGA Prototyping of Network
Services in C#

Salvator Galea*, Nik Sultana*, Pietro Bressana®, David Greaves*,
Robert Soulé’, Andrew W Moore*, Noa Zilberman*
*University of Cambridge, Email: firstname.lastname @cl.cam.ac.uk
tUniversita della Svizzera italiana, Email: firstname.lastname @usi.ch

Abstract—General-purpose CPUs and OS abstractions impose
overheads that make it challenging to implement network func-
tions and services in software. On the other hand, programmable
hardware such as FPGAs suffer from low-level programming
models, which make the rapid development of network services
cumbersome. We demonstrate Emu, a framework that makes
use of an HLS tool (Kiwi) and enables the execution of high-
level descriptions of network services, written in C#, on both
x86 and Xilinx FPGA. Emu therefore opens up new opportu-
nities for improved performance and power usage, and enables
developers to more easily write network services and functions.
We demonstrate C# implementations of network functions, such
as Memcached and DNS Server, using Emu running on the
NetFPGA-SUME platform, and show that they are competitive
to natively written hardware counterparts while providing a
superior development and debug environment.

I. THE EMU FRAMEWORK

Emu is a framework for network functions on FPGAs. Emu
builds upon the Kiwi compiler [1], which allows computa-
tional scientists to program FPGAs with .NET code. The
relationship with Emu to .NET/Kiwi is roughly analogous to
that of the stdlib to C/GCC: Emu provides the implementation
for essential network functionality. The combination of Emu
and HLS provides a powerful substrate for developers to
rapidly implement and deploy network functions using a high-
level language.

Moreover, Emu virtualizes the hardware context of the
network pipeline, allowing users to write code that is portable
across several different heterogeneous targets. Our current
implementation supports CPUs, simulation environments and
FPGAs. Using Emu, developers can run their network func-
tions as normal processes, using virtual or real NICs, and using
network simulators, simplifying debugging and testing.

Software development workflow

(C#)| A1 Write/edit>{ A2 Gompile>(NET CIL) | A3 Run >{ A4 Test
B1 Compile

(Verilog) Hardware
Compilers B2 Simulate development
workflow
A2 : Mono B3 Synthesise
B1 : Kiwi)
B3 : Xilinx Vivado Btz C2 Test

Fig. 1. Emu workflow

1 // If the frame does not contain an IPv4 packet then we implicitly
drop the frame.

2 if (dataplane.tdata.EtherType_Is(EtherTypes.IPv4))

3

4 //Set the appropriate output port in the metadata

5 if (dstmac_lut_hit) {

6 NetFPGA.Set_Output_Port(ref dataplane, lut_element_op);
7 } else {

8 NetFPGA.Broadcast(ref dataplane);

9 3

10 }

11 Kiwi.Pause();
12 // Learn new source MAC addresses
13 if (!srcmac_lut_exist)

15 LUTCfree] = srcmac_port;
16 free = (free > (LUT_SIZE - 1)) ? 0 : free++;
17 }

Fig. 2. Part of a switch implementation showing use of our API for protocols
(Line 2) and NetFPGA (Line 6).

Using NetFPGA [2] as a hardware target, Emu is made
available under an open-source license, and the projects de-
veloped under it are contributed to the NetFPGA community.

II. DEMONSTRATION

In the demo, we present the development flow using Emu,
from the C# level to the hardware. We demonstrate some
of Emu’s unique capabilities, such as running the same
code in heterogeneous environments. We also demonstrate
the integrated debug capabilities embedded in Emu, enabling
in-field debug of operational networking devices, developed
using Emu. We used Emu to implement different networking
services, such as L2 switch, a memcached server, and NAT,
and present a live demonstration of some of these designs.

III. ACKNOWLEDGMENTS

This work has received funding from the EPSRC grant
EP/K034723/1, Leverhulme Trust Early Career Fellowship
ECF-2016-289, European Union’s Horizon 2020 SSICLOPS
(grant agreement No. 644866) and Swiss National Science
Foundation (grant agreement No. 166132).

REFERENCES

[1] S. Singh and D. J. Greaves, “Kiwi: Synthesis of FPGA Circuits from
Parallel Programs,” in Field-Programmable Custom Computing Machines,
pp. 3-12, 2008.

[2] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as Research Commodity,” IEEE
Micro, vol. 34, no. 5, pp. 32-41, 2014.

