
1

Prototyping RISC Based, Reconfigurable
Networking Applications in Open Source
Jong Hun Han∗, Noa Zilberman∗, Bjoern A. Zeeb∗, Andreas Fiessler†, Andrew W. Moore∗

∗University of Cambridge Email: firstname.lastname@cl.cam.ac.uk
†genua GmbH Email: andreas@leyanda.de

Abstract—In the last decade we have witnessed a rapid
growth in data center systems, requiring new and highly
complex networking devices. The need to refresh networking
infrastructure whenever new protocols or functions are intro-
duced, and the increasing costs that this entails, are of a concern
to all data center providers. New generations of Systems on
Chip (SoC), integrating microprocessors and higher bandwidth
interfaces, are an emerging solution to this problem. These
devices permit entirely new systems and architectures that can
obviate the replacement of existing networking devices while
enabling seamless functionality change. In this work, we explore
open source, RISC based, SoC architectures with high per-
formance networking capabilities. The prototype architectures
are implemented on the NetFPGA-SUME platform. Beyond
details of the architecture, we also describe the hardware
implementation and the porting of operating systems to the
platform. The platform can be exploited for the development
of practical networking appliances, and we provide use case
examples.

I. INTRODUCTION

Transformational technology [8], [13], combined with
computing bottlenecks [27] has led to a rethinking of the
hardware-software designs of modern computing systems.
Undoubtedly, many of these changes had been driven by
the growth in networking data created and consumed by
user applications. The increasing amount of networking data
also leads architects to focus on data-centric computational
architectures able to meet the demand of high I/O perfor-
mance. Systems-on-Chip (SoC) integrating high bandwidth
network interfaces also emerge on high performance server
systems [11], [15].

In this paper, we explore architectures embedding RISC
based processors on the NetFPGA-SUME platform [5]. RISC
processors are dominant in the mobile and portable electron-
ics appliances markets due to their high power efficiency [10].
While building a high-performance server based on 64-
bit RISC CPUs, embedded within a SoC alongside high
bandwidth integrated networking and I/O interfaces are also
available [20], [16], While the computing performance of x86
based servers is still better, it is believed that RISC based
servers will eventually prevail thanks to their superior power
efficiency [19].

Soft processors provide a high degree of freedom for both
the processor design and the architecture at a system level.
While free open-source approaches, in contrast to commercial

RISC processors (e.g. ARM-based), have an appealing low-
bar to entry. Extensibility and cost have lead to open-source
CPU projects [7], [4], [1] being increasingly attractive to
users and developers in both academia and industry.

The configurability available in commercial processors em-
bedded in FPGAs (e.g. Xilinx’s ARM-based Zynq, Altera’s
Nios) is not sufficient to enable the introduction of new
processor-level functionality or for tailoring performance. In
contrast, flexibility can almost verge on excessive with open
source processor projects varying significantly: from imple-
mentations of an instruction set architecture (ISA), through
to a soft-core processor, to a full SoC implementation. While
many of these open source projects provide tool chains
for hardware and software implementations, a considerable
engineering effort is still required to build a system on a
newly customized platform. Even when hardware is already
implemented, porting software to a platform is far from being
a trivial task.

Two open source RISC processor implementations are
demonstrated on the NetFPGA-SUME platform: RISC-
V [22], [4] and BERI [23]. In each case a significant amount
of software operations is executed, including, but not limited
to device-drivers, operating-system ports, and a range of
application programmes.

A high performance networking platform with an em-
bedded processor adventures to both industry and academic
research. As an example, a network switch is a key building
block in network systems. In the past, the design of a switch
was focused on the forwarding engine. However, network
architects are pursuing an increasing level of flexibility
without comprising performance. An embedded processor
within the switch enables fully fledge control and adoption
of a switch functionality in field, such as the installation of
new protocol stacks on the fly. However, multi-core processor
cannot replace the FPGA, as FPGAs provide higher data
plane performance [28]. Although FPGA devices have in-
herent limitations to achieving high performance compared to
ASICs, they allow implementation of network fabrics capable
of more than 100 Gbps (e.g. [25]). Additionally, FPGAs allow
verification of line-rate hardware implementations of system
functions without incurring tremendous tape-out costs on
state of the art silicon technology.

The contribution of this work is several-fold: (i) We



2

demonstrate the development of fully-featured network-
systems, based on an open source RISC based CPU, imple-
mented as an FPGA-based prototype. (ii) We compare and
contrast two different open-source processor architectures
as the processing cores for the networking systems and
(iii) we demonstrate porting and running standard operating
systems on top of these fully programmable systems. An
integrated open source platform such as this can provide
a natural evaluation environment for networking systems as
an enabler for their rapid implementation. (iv) We make the
infrastructure available as an open source contribution to the
NetFPGA ecosystem.

II. MOTIVATION

The NetFPGA-SoC (NetSoC) is a platform for the research
community that enables research into current and future
approaches to network-based systems. To understand the
challenge the platform tackles, consider the following use
model:

New network stacks and operating systems for datacen-
ter and cloud computing (e.g. [9], [11], [17]) seek high
throughput, low latency and increased application perfor-
mance. These works take advantage of advances in net-
working, such as network hardware functionality, flexibility
from software defined networks, and novel network fabric
topology. However, all these solutions are limited by the
architecture imposed by their commodity CPUs. Examples
of such limitations include limited support for resource
allocation and isolation in the CPU’s hardware for I/O or
interconnect.

To study possible solutions to application limitations, a
demand is created for platforms that support modifying
and extending CPU/systems architectures. This means closed
commodity CPU based systems are not suitable. Furthermore,
using FPGAs with embedded CPUs makes it hard to port
any successful solution to other platforms or adapt it for
commercial ASIC use. This calls for an open source CPU
based platform.

The CPU is only one part of the equation, as extensive
networking knowledge is required to create high performance
networking platforms. Processors and networking devices
have different performance metrics: IPC vs. packets per
second, throughput vs. bandwidth and latency. The work on
NetSoC brought together researchers from both practices, and
through close integration bridged the gap between the fields.

NetSoC is tailored for scalability studies: if, e.g., there is
a 10× frequency ratio between an FPGA and silicon-based
CPU, then a design that supports 10GbE on an FPGA will
support 100GbE using an ASIC with an embedded CPU.
NetSoC can be used to analysis bottlenecks by reducing only
the CPU and data path pipeline frequency without scaling
down the DRAM frequency. This changes the relative rates
and replicates the impact of improved performance RAM
relative to a stable speed of CPU and data-pipeline. In turn,
this can assist in detecting hidden architecture constraints, or
limitations mistaken to be the memory wall.

TABLE I: Summary of open source RISC processors.
BERI [23], [24] RISC-V [22], [7]

ISA MIPS R4000 RISC-V ISA
OS FreeBSD Linux

Design Bluespec SystemVerilog (BSV) Chisel
FPGA Speed 120MHz 50MHz

In NetSoC, we support two types of RISC CPUs: BERI
and RISC-V (described in section III). Each of the CPUs
supports a different operating system: FreeBSD and Linux,
respectively. This achieves three goals: making both the
BERI and RISC-V architectures available to networking
researchers, making both FreeBSD and Linux available to
networking researchers focused on operating systems and
network stack design, and enabling comparative performance
studies of RISC-V and BERI over the same hardware plat-
form.

III. SYSTEM ARCHITECTURE

Our networked system is prototyped over NetFPGA-
SUME [26], a low-cost, PCIe host adapter card able to
support 40 Gbps and 100 Gbps applications. Two open source
RISC processors known as BERI [23] and RISC-V [7],
summarized in Table I, are implemented respectively on the
NetFPGA-SUME platform to explore their performance and
costs.

We use an identical system-level architecture for both
RISC processors, as illustrated in Figure 1. All peripherals
have address mapped registers, exposed to the processors as
well as an external host (e.g. PC) via a PCI-Express (PCIe)
interface. In addition to the processors, the platform inte-
grates multiple NetFPGA modules, such as the networking
fabric, as well and Xilinx peripheral IPs (e.g. DDR memory,
10G port). In the following subsections, we provide a detailed
description of the integrated modules.

A. BERI and RISC-V

BERI [23] and RISC-V [7] are two diverse architectures.
While BERI [23] is designed based on MIPS R4000 In-
struction Set Architecture (ISA), RISC-V is created based
on new open source ISA. In [24], BERI is running at a clock
speed of 100 MHz, with a 256-bit wide memory interface
and 16 KB L1 and 64 KB L2 caches. In this work, we use
the BERI1 flavour of the processor, which is a mature and
higher-performance variant for advanced research [23], and
implement it using 120 MHz, clock frequency on NetFPGA-
SUME. We integrate BERI modules generated by a Bluespec
SystemVerilog (BSV) compiler into the architecture shown in
Figure 1.

Unlike BERI, RISC-V is designed in Chisel [2], which is
an open source hardware construction language that supports
layered domain-specific hardware language. A RISC-V ASIC
implementation runs at a clock speed of 1.3 GHz [14]. In
this paper, we adopted the RISC-V Verilog core variant used
in [4]. In Figure 1, the SPI controller used to access the SD



3

Fig. 1: RISC processor based FPGA platform architecture.

card storing a bootloader and a Linux kernel is used only by
the RISC-V processor.

As a stand alone computing unit, NetSoC requires a large
memory, from which the operating system and applications
can be executed. To this end, we connect the processors to
the external DDR3 SODIMM module running at 1866 MT/s.
The density of each memory module is 4 GB and it can easily
accommodate the small size of operating system we use.
The external memory on the platform can be extended up
to 32 GB and used also for other purpose.

B. SoC Interconnect

An AMBA AXI protocol is used across the design both
for the data-plane (using an AXI-Stream protocol) and the
control-plane (using AXI4 and AXI4-lite protocols). The
AXI bus interconnect in Figure 1 has two master interfaces1:
the processor(s) and the direct memory access (DMA) engine.
The DMA engine is the communication module with the
host machine, using a PCIe interface. Consequently, all the
modules connected to the AXI interconnect can be accessed
both by the processor and the host machine. Therefore, the
memory and peripherals can be monitored and debugged on
the host machine side.

The AXI-stream protocol is used for Ethernet packet data
transactions across the architecture. Point-to-point transac-
tions between AXI-stream master and slave (ST-M and ST-
S, respectively) allow to easily handle bursts of data without
compromising the line rate.

1A RISC-V core has two master interfaces separated into AXI4 and AXI4-
lite for memory and peripheral accesses, respectively. One is omitted in
Figure 1.

C. Networking Modules

The networking modules used in the architecture are
different from the reference modules provided by NetFPGA-
SUME. While there is some similarity in roles and function-
ality, the RISC embedded architecture requires a different
implementation, as illustrated in Figure 1. The networking
modules consist of four module types: 10 GbE ports, Input
Arbiter (IAR), Output Arbiter (OAR) and Packet Controller
(PAC). Unlike a PC handling high bandwidth networking
through PCIe a board, SoC can enable tightly binding CPU,
MMU, and networking interface to improve performance in
terms of data rate and latency.

The 10 GbE port includes basic Ethernet layers one and
two functionality. Every 10 GbE port module (omitted from
Figure 1), is a combination of an incoming port and an
outgoing port, which create a single physical port. Meta
data indicating packet length and source port information is
appended to each packet within this module as well.

IAR module arbitrates in a round robin manner between all
the 10 GbE input ports to the device, whereas OAR arbitrates
between all output ports while sending outgoing packets.
Both IAR and OAR use an AXI-Stream interface to connect
to the 10 GbE port through the MAC core.

PAC serves two roles: first, it converts all AXI-Stream
transactions from the network to AXI-Lite transactions to-
wards the AXI interconnect, and second it controls all
the transactions from the network to RISC and the other
way around. Any incoming packet arriving from the input
arbiter triggers an interrupt to the CPU, which in turn reads
the packet from the PAC (through the AXI interconnect).
Outgoing packets, from the processor to the network, also
pass through the PAC to the Output Arbiter, an from there
to the 10 GbE ports.



4

Fig. 2: BERI FPGA programming and boot sequences.

In NetSoC, no packet processing is done by the networking
modules, as this functionality is executed by the kernel
driver running on the processor. This feature enables high
programmability in the NetSoC platform, as any protocol or
functionality can be programmed into the processor per use
case.

D. Debugger and Console Modules

BERI processor operations can be traced and debugged
using a built-in debugging unit [23]. The debugging unit
traces the processor operations and provides access to local
registers, interfacing with the serial debugger in Figure 1 by
sending and receiving serial byte data. The serial debugger,
connected to the AXI interconnect, is driven by a host PC
through the PCIe interface. Using the serial debugger, the
processor can be paused, resumed and transfer a dump of
the operated instructions for debug purposes. It is also used
to trigger the boot process of the BERI core after loading the
FreeBSD kernel into the DDR3 memory.

A console module is designed to emulate a serial interface
peripheral (e.g UART). It is mapped onto the same address
range as the BERI serial interface implemented in [12]. The
console module can be used as a terminal of the BERI
operating system.

E. Operating System and Kernel Network Driver

Both processor implementations are running standard op-
erating systems: FreeBSD for BERI, and Linux for RISC-V.

While Linux for the RISC-V is used “as is” from [7], with
FreeBSD for BERI the process was different. We started with
the BERI infrastructure described in [12]. Our porting pro-
cess followed the adjustments common to bring-up of a new
embedded or SoC target device using an already supported
CPU. We had to update the device tree source, describing
the hardware available, and the boot loader, for the memory
layout and the peripherals. A new kernel configuration file
was added including BERI specific peripherals and setting

Fig. 3: Experimental setup for the evaluation.

platform specific options. In addition to the aforementioned
console modules, a network interface driver was written for
interconnecting with the platform, which is already publicly
available in [6]. One advantage of the FreeBSD operating
system, is its existing support of on the fly installation of
network protocols [21], which largely advantages networking
appliances. Without a DMA engine on the BERI side, the
kernel network driver implements a classic register-based
programmed I/O (PIO) interface talking to an input and
an output FIFO. The evaluation results in Section IV are
obtained using this driver.

Due to differences in peripherals and drivers available in
the OSes for BERI and RISC-V architectures, their initial-
ization sequences are designed differently. While RISC-V
loads an image of the Linux kernel from the SD card, BERI
requires several steps to load its kernel, without using the
on-board storage. Figure 2 illustrates the BERI initialization
sequence during the evaluation (Section IV), from program-
ming the FPGA to mounting the network file system (NFS).
The NFS is set between BERI and the host over the 10 GbE
ports shown in Figure 3.

After the OS kernel is loaded, any application can run on
the target processor, as with any host running FreeBSD or
Linux. An immediate example is using the network driver
running on FreeBSD to configure and enable the BERI
network interfaces. Other examples are using scp and vi.

IV. EVALUATION

We implemented the presented BERI and RISC-V architec-
tures for a Virtex-7 690T FPGA used on NetFPGA-SUME2,
using Xilinx Vivado 2014.4 EDK, following the conven-
tional Xilinx tool chain design flow. The BERI and RISC-V
based platforms run at 120 MHz and 50 MHz, respectively.
Although a single-core implementation is used to port the OS
kernels, we also investigate the number of BERI and RISC-V
cores that can be simultaneously instantiated on the platform.

2This work will be available as a contributed project for the NetFPGA-
SUME from the NetFPGA (http://www.netfpga.org) project.



5

Fig. 4: RTL level simulation environment for verification.

A. Simulation Environment

Figure 4 presents the simulation environment used to verify
the architecture at system level. We conducted a RTL level
simulation, using the same 32 MB FreeBSD kernel used in
the booting process of the actual hardware. The Design-
Under-Test (DUT) is the top level module implemented on
the FPGA. To simulate interaction with the external memory,
the memory controller is connected to a DDR3 SODIMM
memory model [3], which represents the same memory as it
is used on the SUME board.

While the DRAM memory is initialized in the hardware
by the host via the AXI bus interface, the initialization is not
practical in simulation due to the duration of the simulation
processing time. Instead, the memory model is initialized
with the kernel by using a dedicated testbench task. The task
converts the data to a required format, splits the kernel to files
and distributes it as required. In this manner, we can observe
in the simulation the entire core initialization sequence, from
BERI entering the kernel to logging data out into the console
module. The RTL level simulation was performed using the
Mentor Questa Sim 10.4 simulator.

The simulation environment for the RISC-V architecture is
similar to the Figure 4. In this case, we verified the sequence
until the boot loader accesses the SD card via the SPI
controller, and the Linux kernel is copied into the memory.
The simulation environment is also available as open-source
as part of the released project.

B. Multi-Core Implementation Results

Many-core implementations can benefit a multitude of
applications. We explore multi-core implementations of both
processor architectures, and evaluate their resource usage and
scalability. Clock speeds of 120 MHz and 50 MHz are used
for the single- and multi-core BERI and RISC-V implemen-
tations, respectively. We find that four (quad) BERI cores
and eight (octa) RISC-V cores can be implemented on the
platform at a time. Table II summarizes the implementation
cost of BERI and RISC-V, showing the amount of resources
taken by the RISC cores, AXI Interconnect (Inter), Peripheral

TABLE II: Comparison of FPGA implementation cost.
Single-BERI

LUT/FF
Quad-BERI

LUT/FF
Single-RISC-V

LUT/FF
Octa-RISC-V

LUT/FF
RISC(s) 72.1K/29.8K 289K/118K 40.8K/16.7K 326K/133K

(%) 16.6%/3.4% 66.7%/13.6% 9.4%/1.9% 75.3%/15.4%
Inter 16.9K/18.7K 21.0K/19.0K 6.1K/6.2K 16.9K/13.4K
(%) 3.9%/2.1% 4.9%/21.9% 1.4%/0.7% 3.9%/1.6%
Peri 47.8K/47.2K 47.5K/47.3K 35.8K/35.4K 35.6K/35.4K
(%) 11.0%/5.4% 10.9%/5.4% 8.2%/4.1% 8.2%/4.1%

Unused 296K/770K 75.7K/681K 350K/808K 54.1K/683K
(%) 68.4%/88.9% 17.4%/78.7% 80.8%/93.2% 12.5%/78.9%

and Networking modules (Peri) and the remaining unused
resources (Unused). The RISC-V implementation is signifi-
cantly smaller than BERI; this allows twice the number of
cores on the same platform. Differences in the architecture
of every processor affects the surrounding peripherals and
interconnects, leading to a difference in the number of LUT
and FF. In addition, AXI-interconnect (Inter) is affected by
the number of cores due to the increased number of the cores’
master interfaces.

This experiment provides two important insights: First,
when a computing-intensive networking application is re-
quired, increasing the number of cores in order to achieve
better compute performance is possible. Second, when a
networked data-intensive application is required, a single-
core implementation has plenty of resources (70%-80%)
available to implement networking and data processing mod-
ules, increasing the bandwidth performance.

C. Example: Network Stack Evaluation on BERI FreeBSD

The most likely use case of NetSoC is closely integrat-
ing new CPU features with the network. Our experiment
therefore uses the BERI processor and network utilities
running on FreeBSD, with the goal of showing that Net-
SoC performance scales comparably with CPU frequency.
Figure 3 shows an experimental setup for the performance
evaluation. The PC machine used for the experiment ran
an octa-core i7-960 CPU, with 24 GB of RAM, equipped
with NetFPGA-SUME and a dual port SolarFlare 10G NIC
card. As illustrated in Figure 3, NetSoC and the host PC can
communicate through the 10 GbE ports over an optical fibre
connection. In the experiment, we evaluated how BERI core
clock frequencies affect the ping packet latency between
NetSoC and PC machine, as shown in Figure 5 where “PC-
NICs” is the latency between identical PC machines using
the identical 10 GbE NIC cards. “HW” refers to a FPGA-
based hard-coded implementation of ICMP echo reply,
implemented by the NAAS-Emu project over NetFPGA-
SUME3, with a known latency of 1.27us and a jitter of 100ns.
The latency marked as “HW” is the ping round trip latency
between the PC and this implementation. It provides us a
reference for the latency caused by the PC, fiber and 10 GbE
ports.

3Included in NetFPGA SUME release 1.4.0



6

Fig. 5: CDF of ping latency result.

Fig. 6: CDF of cycles per ping, in thousands of cycles.

As we consider the scaling of frequency from FPGA to
ASIC, we compare the latency of NetSoC with the latency
of PC-NICs in CPU cycles. To improve the accuracy, we
only consider the NetSoC latency, and subtract the median
accumulated latency of the requesting PC, fiber and 10 GbE
port latency, represented by “HW” (15 us). The results are
presented in Figure 6: considering the median, there is
less than 15% difference in cycles between NetSoC default
frequency (120MHz) and minimal tested frequency (60MHz),
and there is less than 20% difference in cycles between PC-
NICs and NetSoC running at 120MHz. The higher cycles
count of the host is contributed partly to unaccounted con-
tributors, such as the PCIe interconnect.

We also evaluated TCP and UDP performance on Net-
SoC using iperf. The application uses packet processing
modules with a simple register-based PIO and achieves
only 6.9 Mbps for both TCP and UDP. These results are
comparable with FreeBSD running netsend results shown
in [18]. Similarly, we expect to achieve a much higher perfor-
mance by using userspace applications for packet generation.
Beyond those the achievable data rate can be significantly
improved by enhancing the packet processing module in the
networking part of the design, adding features such as packet
DMA to the local RAM, checksum validation, segmentation
offload and more, which are under development for our
architecture.

V. CONCLUSIONS AND FUTURE WORK

We presented an open source, RISC based, SoC archi-
tectures for networking applications implemented on the
NetFPGA-SUME platform. The system was tested using
common user applications running on FreeBSD and Linux
operating systems. We showed that the integrated RISC
processor is a feasible solution for networking appliances
and that scalable CPU designs can take leverage of NetSoC.
Furthermore, the flexibility and programmability provided by
the platform open new directions for networking research.

Although the frequency of FPGA devices is limited in
comparison with ASICs, their parallel implementation allows
evaluating scalable prototypes and high data rate networking
fabrics close to practical systems. The processors and pe-
ripherals presented in this paper require further optimization
through hardware and software co-designing. The data- and
control-plane designs in the architecture can be considered
relatively independent, and we intend to explore reciprocation
within the integrated architectures. We plan to further extend
our work, developing novel networking fabric solutions as
proposed in [27].

VI. ACKNOWLEDGEMENTS

We would like to thank the many people who contributed
to this paper. We would like to thank Salvator Galea, from
the EPSRC NAAS project (EP/K034723/1), who contributed
the ICMP echo reply hardware implementation. This work
was jointly supported by the European Union’s Horizon 2020
research and innovation programme 2014-2018 under the
SSICLOPS (grant agreement No. 644866), ENDEAVOUR
(grant agreement No. 644960), the Leverhulme Trust Early
Career Fellowship ECF-2016-289, the Defense Advanced
Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-11-C-
0249. The views, opinions, and/or findings contained in this
article/presentation are those of the author/ presenter and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Department
of Defense or the U.S. Government.

REFERENCES

[1] BERI. http://www.beri-cpu.org.
[2] Chisel. http://github.com/ucb-bar/chisel.
[3] DDR3 Verilog Model. http://www.micron.com/parts/dream/

ddr3-sdram/mt41k512m4hx-15e.
[4] LowRISC. https://www.lowrisc.org.
[5] NetFPGA-SUME-live. https://github.com/NetFPGA.
[6] NF-MAC-DRIVER. https:/github.com/freebsd/freebsd/blob/master/

sys/dev/netfpga10g/nf10bmac/if nf10bmac.c.
[7] RISC-V. https://riscv.org.
[8] K. Bailey, L. C. Steven, D. Gribble, and H. M. Levy. Operating system

implications of fast, cheap, non-volatile memory. In 13th USENIX
conference on Hot topics in operating systems, 2011.

[9] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 49–65. USENIX
Association, Oct. 2014.

http://www.beri-cpu.org
http://github.com/ucb-bar/chisel
http://www.micron.com/parts/dream/ddr3-sdram/mt41k512m4hx-15e
http://www.micron.com/parts/dream/ddr3-sdram/mt41k512m4hx-15e
https://www.lowrisc.org
https://github.com/NetFPGA
https:/github.com/freebsd/freebsd/blob/master/sys/dev/netfpga10g/nf10bmac/if_nf10bmac.c
https:/github.com/freebsd/freebsd/blob/master/sys/dev/netfpga10g/nf10bmac/if_nf10bmac.c
https://riscv.org


7

[10] E. Blem, J. Menon, and K. Sankaralingam. Power struggles: Revisiting
the risc vs. cisc debate on contemporary arm and x86 architectures. In
IEEE High-Performance Computer Architecture (HPCA), 2013.

[11] P. Costa, H. Ballani, K. Razavi, and I. Kash. R2c2: a network stack for
rack-scale computers. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 551–564. ACM, 2015.

[12] B. Davis, R. Norton, J. Woodruff, and R. N. M. Watson. How freebsd
boots: a soft-core mips perspective. In AsiaBSDCon, 2014.

[13] K. Keeton. The machine: An architecture for memory-centric com-
putint. Workshop on Runtime and Operating Systems for Supercom-
puters (ROSS), 2015.

[14] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, and V. Sto-
janovic. A 45nm 1.3GHz 16.7 Double-Precision GFLOPS/W RISC-V
Processor with Vector Accelerators. In IEEE European Solid State
Circuits Conference (ESSCIRC), 2014.

[15] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron, H. Williams, and
X. Zhao. Xfabric: A reconfigurable in-rack network for rack-scale
computers. 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016.

[16] S. Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan, and N. P.
Jouppi. System-level integrated server architectures for scale-out
datacenters. In IEEE/ACM Micro-44, 2011.

[17] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The operating system is the
control plane. ACM Transactions on Computer Systems, 33(4):11,
2016.

[18] L. Rizzo. netmap: a novel framwork for fast packet i/o. In 21st
USENIC Security Symposium, 2012.

[19] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji,
and S. U. Khan. Survey of techniques and architectures for designing
energy-efficient data centers. IEEE Systems Journal, 10(2):507–519,
June 2016.

[20] C. Singh, G. Favor, and A. Yeung. Xgen-2:28nm scale-out processor.
In Hot Chips: A Symposium on High Performance Chips, 2014.

[21] R. Stewart. TCP Stack Modularity. FreeBSD, 2016.
[22] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic. The RISC-V

Instruction Set Manual, Volume I: Base User-Level ISA. Technical
Report UCB/EECS-2011-62, University of California, Berkeley, May
2011.

[23] R. N. M. Watson, J. Woodruff, D. Chisnall, and Others. Bluespec
Extensible RISC Implementation: BERI Hardware reference. Techni-
cal Report UCAM-CL-TR-868, University of Cambridge, Computer
Laboratory, Apr. 2015.

[24] J. Woodruff, A. T. Markettos, and S. W. Moore. A 64-bit MIPS
processor running freebsd on a portable FPGA tablet. In Internation
Conference on Field-programmable Logic and Applications, 2013.

[25] Xilinx. ”Xilinx Highlights All Programmable Solutions for 400GE
Applications at WDM Nice 2014”. http://press.xilinx.com/2014-
06-17-Xilinx-Highlights-All-Programmable-Solutions-for-400GE-
Applications-at-WDM-Nice-2014, [Online].

[26] N. Zilberman, Y. Audzevich, G. Covington, and A. W. Moore. NetF-
PGA SUME: Toward 100 Gbps as Research Commodity. IEEE Micro,
34:32–41, Sept. 2014.

[27] N. Zilberman, A. W. Moore, and J. A. Crowcroft. From Photons to Big
Data Applications: Terminating Terabits. Royal Society Philosophical
Transactions A, 2016.

[28] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore. Reconfig-
urable network systems and software-defined networking. Proceedings
of the IEEE, 103(7):1102–1124, 2015.


	Introduction
	Motivation
	System Architecture
	BERI and RISC-V
	SoC Interconnect
	Networking Modules
	Debugger and Console Modules
	Operating System and Kernel Network Driver

	Evaluation
	Simulation Environment
	Multi-Core Implementation Results
	Example: Network Stack Evaluation on BERI FreeBSD

	Conclusions and Future work
	Acknowledgements
	References

