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ABSTRACT
P4 has emerged as the de facto standard language for describing
how network packets should be processed, and is becoming widely
used by network owners, systems developers, researchers and in
the classroom. The goal of the work presented here is to make it
easier for engineers, researchers and students to learn how to pro-
gram using P4, and to build prototypes running on real hardware.
Our target is the NetFPGA SUME platform, a 4 × 10 Gb/s PCIe card
designed for use in universities for teaching and research. Until
now, NetFPGA users have needed to learn an HDL such as Verilog
or VHDL, making it off limits to many software developers and
students. Therefore, we developed the P4→NetFPGA workflow,
allowing developers to describe how packets are to be processed in
the high-level P4 language, then compile their P4 programs to run
at line rate on the NetFPGA SUME board. The P4→NetFPGA work-
flow is built upon the Xilinx P4-SDNet compiler and the NetFPGA
SUME open source code base. In this paper, we provide an overview
of the P4 programming language and describe the P4→NetFPGA
workflow. We also describe how the workflow is being used by
the P4 community to build research prototypes, and to teach how
network systems are built by providing students with hands-on
experience working with real hardware.

1 INTRODUCTION
Networking switches, routers, and network interface cards (NICs)
have traditionally been dominated by ASICs that process packets us-
ing a fixed function pipeline. While some programmable devices are
used (e.g. NPUs [23], FPGAs [38], CPUs [30]), conventional wisdom
in networking states that programmable forwarding devices are
slower, more expensive and consume more power. However, this is
being challenged by a new breed of programmable switches and
NICs matching the performance, power and cost of fixed-function
devices [7, 8, 25]. Network system designers are exploiting the
programmability to add new features to the forwarding plane, in-
cluding telemetry [19], layer-4 load balancing [21], encryption, and
in-network caching [16].

With various programmable forwarding devices now available,
what high-level language should be used to program them? This
was the motivation for the creation of the P4 language [4], which in
recent years has become the first de facto language for programming
forwarding devices.

The P4 language was designed with three goals in mind:

• Protocol independence — network devices should not be
hard coded to support specific protocols.

• Field reconfigurability — programmers should be able to
change the fundamental packet processing behavior of net-
work devices after they have been deployed.

• Portability — packet processing programs should not be tied
to a specific device.

There are many benefits to using P4 for programming network
devices. Network operators can easily add support for new fea-
tures into their network devices. Programmers can remove the
features that they are not using in order to reduce complexity in
their networks. Oftentimes network failures are caused by interac-
tions between protocols that network operators do not even know
they are using. The memory and compute resources within net-
work devices can be flexibly allocated amongst the desired features.
Programmable data planes are also bringing about much greater
visibility into the network as new diagnostic techniques start to
emerge, such as In-band Network Telemetry (INT) [19]. The P4
programming model brings with it a software-style development
process which enables a rapid design cycle, fast innovation, and
the ability to fix data plane bugs in the field. Additionally, network
operators are able to keep their own ideas because they do not need
to share their P4 programs with anyone. Hence, companies are able
to maintain a competitive advantage.

An FPGA-familiar reader will recognize that the benefits of
P4 described above directly intersect with benefits of using pro-
grammable hardware such as FPGAs. So one question that directly
follows from this observation is why FPGAs, and HDLs such as
Verilog or generic high-level synthesis, are not just used to im-
plement all network devices. One of the reasons is because of the
performance gap between FPGAs and ASICs. While the perfor-
mance gap has decreased in recent years, top of the line ASICs
can still process packets about an order of magnitude faster than
top of the line FPGAs [12]. Another reason is because the steep
learning curve that is required to program FPGAs using hardware
description languages hinders the ability of network programmers
to implement new features rapidly. Notwithstanding this, many
network devices are in fact implemented using FPGAs, especially
network interface cards [12], but typically the implementation has
to be done by hardware experts.

Operating at a higher level of domain-specific abstraction, the P4
language identifies the key primitives that are used to build packet
processing devices. P4 programs can then be compiled onto any
device that supports the language’s underlying primitives, includ-
ing high speed packet processing ASICs [25], NPUs [24], software
switches running on CPUs [33], and FPGAs [38].

The need to enable the programming of FPGAs using P4 therefore
has a twofold motivation:

• Operators want to have a standard way to configure the
behavior of their network devices, in order to ease the burden
of managing networks. The industry is converging on using
P4 for this purpose, and hence packet processing FPGAs
within such devices must become P4 programmable.
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• FPGAs are a useful platform on which to prototype P4 de-
signs at hardware line rates that may later be deployed on
other network devices with more customized hardware.

The P4 community has produced an open source software em-
ulation environment [28], which has proved to be an extremely
useful tool that developers can use to prototype P4 applications.
However, this software platform has some significant limitations;
most notable is the limited performance which makes it impossi-
ble for developers to gauge how their application will perform in
a realistic environment. Furthermore, the software target is very
flexible and does not realistically capture the constraints of an ac-
tual hardware implementation. For these reasons, we believe the
P4 community can embrace FPGAs as the basis of an open source
hardware environment to resolve these difficulties. In particular,
this paper adopts the existing open source NetFPGA family as the
hardware platform for research and development of P4 programs.
The NetFPGA platform is a low-cost, open-source, FPGA-based net-
working device, which has been specifically designed for teaching
and research.

This paper provides a tutorial introduction to the P4→NetFPGA
workflow:

• We provide an overview of the P4 language (Section 2), P4-
SDNet (Section 3) and the NetFPGA platform (Section 4).

• We describe the main new contribution which ties these com-
ponents together: the open source P4→NetFPGA workflow
(Section 5), its building blocks, and its operation.

• We discuss use cases of the P4→NetFPGA workflow in re-
search and teaching (Section 6) and its future roadmap (Sec-
tion 7).

• Finally, we provide information on how to get started imme-
diately on using the P4→NetFPGA workflow (Section 9).

2 P4 LANGUAGE OVERVIEW
This section provides a brief overview of the P4 programming
language. The goal is not to provide a comprehensive description,
but rather just enough detail for a reader to grasp the fundamental
concepts.

Figure 1 depicts the general process of programming a P4 device.
The vendor of a packet processing device provides three compo-
nents to the user:

• The packet processing target device.
• A P4 architecture model to expose the programmable fea-
tures of the target to the P4 programmer.

• A compiler to map the user’s P4 program into a target-
specific configuration binary file which is used to tell the
target how it should be configured to process packets.

The user provides a P4 main program to instantiate the archi-
tecture model, by filling in its programmable components. The
user also provides control software (i.e. a control plane) which is
responsible for controlling the packet processing device at run time.

In order to make network devices protocol independent, i.e. with-
out built-in implementations of specific protocols, P4 programmers
define the format of all protocol headers that they want the device
to handle. Here is an example that shows how a programmer might

Figure 1: The process of programming a P4 target.

define the Ethernet and IPv4 headers. Note that typedef statements
can be used to make the code more readable.
typedef bit <48> macAddr_t;

typedef bit <32> ip4Addr_t;

header ethernet_t {

macAddr_t dstAddr;

macAddr_t srcAddr;

bit <16> etherType;

}

header ipv4_t {

bit <4> version;

bit <4> ihl;

bit <8> diffserv;

bit <16> totalLen;

bit <16> identification;

bit <3> flags;

bit <13> fragOffset;

bit <8> ttl;

bit <8> protocol;

bit <16> hdrChecksum;

ip4Addr_t srcAddr;

ip4Addr_t dstAddr;

}

struct headers {

ethernet_t ethernet;

ipv4_t ipv4;

}

A P4 architecture model can contain P4-programmable elements
of two types: parsers and control blocks. Parsers are responsible for
extracting headers out of an incoming stream of bytes. They are
implemented as a finite state machine with three predefined states:
start, accept, and reject. An implementation may also contain
other user defined states. Parsers always start in the start state,
execute one or more statements, then transition to the next state
until reaching either the accept or reject state.

Below is an example implementation of a P4 parser. In this sim-
ple example, the parser first uses the packet_in object’s extract
method to fill out the fields of the Ethernet header. It then tran-
sitions to either the parse_ipv4 state or the accept state based
on the value of the Ethernet header’s etherType field. Within the
parse_ipv4 state, the parser simply extracts the IPv4 header and
then transitions to accept.
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Table 1: Example entries for the forward table.

Key Action ID Action Data
1 set_output_port ID 2
2 set_output_port ID 1

parser MyParser(packet_in packet ,

out headers hdr) {

state start {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

0x800 : parse_ipv4;

default: accept;

}

}

state parse_ipv4 {

packet.extract(hdr.ipv4);

transition accept;

}

}

Control blocks can be used to represent bothmatch-action packet
processing logic as well as packet deparsers. A match-action pro-
cessing block uses tables, actions, and imperative code to manip-
ulate input headers and metadata. This match-action packet pro-
cessing model was originally introduced as the centerpiece of the
OpenFlow model for Software Defined Networking (SDN) [20].

When a P4 programmer defines a match-action table, they de-
clare various properties such as the header and/or metadata field(s)
to match upon, the type of match to be performed, a list of all pos-
sible actions that can be invoked, the number of entries to allocate
for the table, and a default action to invoke if no match is found. A
table entry contains a specific key to match on, a single action to
invoke when the entry produces a match, and any data to provide
to the action when it is invoked. Table entries are populated at run
time by the control plane software.

The following is an example p4 match-action control block im-
plementation and Table 1 shows how the forward table might be
populated. This simple example will forward all IPv4 packets that
arrive on port 1 to port 2; and all IPv4 packets that arrive on port 2
to port 1. All other packets will be dropped.

control MyMatchAction(inout headers hdr ,

inout std_meta_t std_meta) {

action set_output_port(bit <8> port) {

std_meta.output_port = port;

}

action mark_to_drop () {

std_meta.drop = 1;

}

table forward {

key = { std_meta.ingress_port: exact; }

actions = {

set_output_port;

mark_to_drop;

}

size = 1024;

default_action = mark_to_drop ();

}

apply {

if (hdr.ipv4.isValid ()) {

forward.apply();

} else {

mark_to_drop ();

}

}

}

Deparsers are special cases of control blocks that perform the
inverse operation of parsers. Their job is to reassemble the packet
headers onto an outgoing packet byte stream. A header is added to
the packet using the packet_out object’s emit method. Deparsing
is implemented using the P4 control block mechanism because
it only involves sequential logic as used for actions. Below is an
example deparser implementation: it simply reinserts the Ethernet
and IPv4 headers back into the packet.

control MyDeparser(packet_out packet ,

in headers hdr) {

apply {

packet.emit(hdr.ethernet);

packet.emit(hdr.ipv4);

}

}

In addition to defining the interfaces of all parser and control
blocks, a P4 architecture definition also defines the format of any
standard metadata buses as well as the set of externs that can
be invoked within P4 programs. Standard metadata buses, con-
veying sideband data alongside each packet, are used to allow
P4-programmable elements to interact with non-programmable
elements within the architecture. Externs are used to execute de-
vice specific logic; their implementation is not described in P4 and
programs only see the inputs and outputs.

3 XILINX P4-SDNET OVERVIEW
The Xilinx SDNet product was originally built as a design envi-
ronment centered around an internally-created packet processing
language called PX [5], which pre-dated P4 by a number of years.
The goals and capabilities of PX and P4 intersect in many — indeed
most — ways. As the networking community has converged on
using P4 as the standard language, Xilinx has embraced the change
and, in the first instance, added a P4 to PX translator to the SDNet
design environment. Figure 2 depicts the process of compiling P4
programs using this version of SDNet. The front end translator
maps P4 programs into corresponding PX programs and also pro-
duces a JSON file with information about the design that is required
by the runtime control software. The PX program is passed, along
with configuration parameters, into SDNet which then produces
an HDL module that implements the user’s P4 program. Relative to
hand-optimized RTL designs, the result produced by SDNet is gen-
erally within about 2x the logic and memory resource utilization.
Additionally, SDNet generated designs can be configured to process
packets at line rates between 1 and 400 Gb/s. SDNet also produces
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a SystemVerilog simulation testbench, C drivers to configure the
PX tables, and an optional C++ model of the PX program to be used
for debugging purposes. Recognizing the momentum behind P4,
the next (2019) generation of SDNet provides a native P4 compiler,
without the intermediate step via PX. This provides substantial
improvements in packet processing pipeline latency, and in FPGA
resource use.

Figure 2: The Xilinx P4-SDNet compilation flow. P4 pro-
grams are first translated into a PX program, which is then
compiled into a Verilogmodule using the SDNet flow. SDNet
also produces a verification environment.

4 NETFPGA OVERVIEW
The NetFPGA project is a teaching and research tool, designed to
allow packets to be processed at line-rate in programmable hard-
ware. The NetFPGA project consists of four elements: boards, tools
and reference designs, a community of developers, and contributed
projects. The NetFPGA hardware family consists of three gener-
ations of FPGA-based networking boards; the latest is the SUME
board [39] which has total I/O capacity of 100 Gb/s. All of the
NetFPGA boards are designed with a PCIe connector so that net-
working software running on a host machine is able to interact
with the FPGA accelerated packet processing logic. All of the code
and documentation is openly hosted on GitHub [22].

Figure 3 depicts a block diagram of the canonical NetFPGA ref-
erence design. A similar design is used for NICs, switches, and IPv4
routers. It consists of four 10G SFP+ input/output ports along with
one DMA interface for the CPU path. The NetFPGA data path con-
sists of three main components: Input Arbiter, Output Port Lookup,
and Output Queues. The Input Arbiter admits packets from the
ports into the data path, towards the Output Port Lookup Module,
where the main packet processing occurs and an output port is
selected. The Output Queues buffer packets while they wait to be
sent to the outputs. The core data path uses a 256-bit wide bus and

runs at 200 MHz, fast enough to support an aggregate of 40 Gb/s
from all four SFP+ ports.

NetFPGA has been used in classrooms for about 15 years with
over 2,000 boards deployed. However, it has always required stu-
dents to program in Verilog or VHDL, placing it off limits to many.
While there are many students interested in learning about net-
worked systems, relatively few have the necessary prerequisite
knowledge in both hardware design and networking. Similarly, net-
working researchers wishing to prototype their ideas in hardware
have needed to learn Verilog or VHDL.

To bridge this gap, the P4→NetFPGA workflow was created,
with the goal of making it much easier for networking students
and researchers to process packets in hardware. By allowing stu-
dents to program NetFPGA using P4, instructors can give their
students hands-on experience working with real hardware, while
allowing them to focus on learning networking concepts rather
than the minutiae involved in FPGA design. Similarly, network-
ing researchers can rapidly prototype new systems without being
bogged down in hardware development.

Figure 3: A block diagram of the NetFPGA reference design.

5 P4→NETFPGAWORKFLOW OVERVIEW
P4 designs for the NetFPGA SUME board are based on the Simple-
SumeSwitch architecture, shown in Figure 4. The architecture is
quite simple, consisting of a parser, a match-action pipeline, and
a deparser. It is a good starting point for new P4 developers be-
cause it is simple and easy to understand, yet flexible enough to
implement many different networking protocols and algorithms.
It is less comprehensive (and we think much easier to understand
for novices) than the standard P4 Portable Switch Architecture
(PSA) [29], which is more suitable for full-featured commercial
switches.

Table 2 describes the format of the SimpleSumeSwitch’s
sume_metadata bus and the functionality of each field. The archi-
tecture could also be extended by more advanced users, or, for the
most adventurous users, it could be completely replaced by writing
a new architectural model.

Figure 5 outlines the automated P4→NetFPGA workflow. The
user writes a P4 program which is compiled (by Xilinx P4-SDNet)
into an HDL instance of the SimpleSumeSwitch architecture. The
SimpleSumeSwitchmodule is then automatically integrated into the
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Table 2: Description of the SimpleSumeSwitch sume_metadata fields.

Field Name Size (bits) Description
pkt_len 16 Size of the packet in bytes (not including the Ethernet preamble or FCS)
src_port 8 Port on which the packet arrived (one-hot encoded)
dst_port 8 Set by the P4 program - which port(s) the packet should be sent out of (one-hot encoded)

send_dig_to_cpu 8 Set the least significant bit of this field to send the digest_data to the CPU
*_q_size 16 Size of each output queue at P4 processing start time, measured in of 32-byte words

Figure 4: Block diagram of the SimpleSumeSwitch P4 archi-
tecture used within the P4→NetFPGA workflow.

NetFPGA Reference Switch design by replacing the default output
port lookup module. Here is the basic set of steps used within the
workflow:

(1) Write P4 program
(2) Implement custom extern modules (optional)
(3) Write python script to generate test data for simulations
(4) Run HDL simulations
(5) Build bitstream for FPGA
(6) Test the design on hardware
Ideally, users focus all their effort on steps 1-3, while all other

steps are automated to eliminate the need for users to work with
HDL.

The remainder of this section describes various aspects of the
P4→NetFPGA workflow in more detail.

5.1 Extern Function Library
The core P4 language is designed to let users express stateless packet
processing. Extern functions can be used for functions that cannot
be described in P4, including stateful functions. Extern functions
are implemented in HDL and the P4 program just sees the inputs
and outputs, as parameters and results. In order to abstract away
all HDL details from the programmer, P4→NetFPGA provides a
library of commonly-used extern functions, shown in Table 3.

The supported extern functions in Table 3 are divided into two
categories: stateless and stateful (inspired by Domino atoms [35]).
To guarantee consistency between successive packets, stateful op-
erations cannot be pipelined; each performs an atomic read-modify-
write operation per packet. Extern functions can be combined to
implement a wide variety of common, more complex algorithms.

For users who are experienced with HDL, the P4→NetFPGA
workflow makes it very easy to create new extern functions. First,
the user writes the extern module in HDL, then adds a few lines to
one configuration file.

5.2 Simulation Environment
It is generally easier to debug program behavior in simulation
than in hardware, and so the workflow helps users write and run
simulations of their P4 programs.

First, developers can write a script consisting of a set of com-
mands to populate match-action table entries. These entries will be
automatically added to the P4 tables at the start of each simulation.

Second, developers can generate test packets (& metadata) using
a Python Scapy module [3], along with the corresponding expected
output packets & metadata.

Once the packets and metadata have been produced, users run
two stages of simulation. The first stage is to run the testbench
produced by the SDNet compiler. This will “send” the user defined
input packets and metadata to the SimpleSumeSwitch HDL module
and then compare the outputs with the expected outputs. Once
verification is complete, the user runs a command to install the
SimpleSumeSwitch HDL module as a NetFPGA IP core. The second
stage of simulations uses the same stimuli and comparisons to verify
that the SimpleSumeSwitch module was successfully integrated
into the NetFPGA reference design.

After all simulations indicate that the P4 program is behaving
correctly, the user runs one command to build the FPGA bitstream
and can then start testing the design on hardware.

5.3 Runtime Control
When our switch is up and running, we need to control its behavior
from a control plane. To this end, the P4→NetFPGA workflow gen-
erates a set of program-specific Python API control functions. The
API functions let the user add/remove table entries and read/write
stateful externs. The control software is thus able to dynamically
influence how the FPGA processes packets without changing the
hardware design. The Python API functions are wrappers around
the C table drivers generated by SDNet.

One of the most useful features for debugging is an interactive
CLI (command line interface), automatically generated by the work-
flow. The CLI lets the user interact with the P4 program at runtime
and query compile time information about the program.

6 P4→NETFPGA IN PRACTICE
For the vast majority of new FPGA developers, learning to write P4
programs is significantly easier than learning to write HDLmodules.
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Figure 5: The automated P4→NetFPGA compilation flow. P4 programs are compiled into an HDL instance of the Simple-
SumeSwitch architecture, which is then used to replace the output port lookup module in the NetFPGA Reference Switch
design.

Table 3: The P4→NetFPGA extern function library.

Stateful Atomic Extern Functions
Name Description
RW Read or write state
RAW Read, add to, or overwrite state
PRAW Either perform RAW or do not perform RAW based on predicate

ifElseRAW Two RAWs, one each for when a predicate is true or false
Sub IfElseRAW with support for subtraction as well

Stateless Extern Functions
Name Description

IP Checksum Given an IP header, compute the IP checksum
LRC Longitudinal redundancy check, simple hash function

timestamp Generate timestamp (measured in clock cycles, granularity of 5ns)

Table 4 compares the number of lines of code (LOC) required to im-
plement an Ethernet learning switch and an IPv4 router using both
Verilog and P4. P4 programs are drastically more concise, largely
because P4 exposes the abstractions that are needed to implement
these types of applications. If we allow program size to serve as an
indicator of code complexity then P4 programs are clearly easier
to reason about. As a result, the P4→NetFPGA workflow allows
researchers to rapidly implement research prototypes, and instruc-
tors to quickly teach students networked-systems design using real
hardware.

Table 4: P4 vs Verilog lines of code comparisons.

Verilog LOC P4 LOC
Ethernet Learning Switch 1213 82

IPv4 Router 3889 266

6.1 Research Applications
The P4→NetFPGA research community is already thriving and
has demonstrated that the workflow can be used to develop inter-
esting research vehicles. This section will describe some of these
applications.

In-band network telemetry (INT). This has been coined as the
killer application for programmable data planes. INT [19] concerns
gaining more visibility into the network, as packets traversing it
collect programmable information. It provides answers to questions
such as: Which path did my packet take through the network?
Which rules did my packet take to get where it is now? How long
did my packet queue at each switch? Who did my packet share
a queue with? It can answer these questions without adding any
additional packets into the network. For decades, network operators
have been using limited tools like ping, traceroute, and SNMP to
debug their networks. The amount of visibility provided by INT
is a leap forward and is of great interest to network operators. An
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example implementation of the INT protocol can be found in the
P4→NetFPGA repository [15].

Distributed Proactive Congestion Control. Most Internet conges-
tion control algorithms are reactive in the sense that they first
measure congestion signals from the network, such as packet loss
or queue size, and then reactively adjust flow rates. Proactive al-
gorithms, on the other hand, use explicit information about the
flows and network topology to directly compute optimal flow rates
before congestion occurs. The P4→NetFPGA workflow was used to
develop a prototype proactive algorithm based on [17] in which the
network switches exchange messages with each other and compute
the optimal flow rates in a distributed fashion.

Stateless load-aware load balancing. Load balancing connections
across many replicated instances of the same application is a very
important task in modern data centers. The challenging aspect of
building one of these load balancers is that all packets belonging
to a particular connection must always be passed to the same ap-
plication instance — a property called per connection consistency
(PCC). Typically, there are hundreds or even thousands of servers
dedicated to performing this sort of load balancing in a data center.
SilkRoad [21] proposed implementing stateful load balancing in
modern programmable switch devices hence eliminating the need
for an army of software load balancers, thus saving cost. More re-
cently, Benoit et. al. proposed SHELL [31] — a stateless application-
aware load balancer prototyped using P4→NetFPGA that is able
to closely approximate PCC. By making the load balancer imple-
mentation stateless, the design becomes much more scalable and
practical to implement on hardware devices with limited memory.

Programmable Data Plane Verification. As programmable net-
work devices become more common the reality is that network
design bugs will become more common as well. The need is to reli-
ably debug and validate the functionality of programmable designs
running on hardware targets. NetDebug [6] proposes a P4-based
programmable architecture for testing and validating network de-
signs, running at line rate. NetDebug has a prototype implemented
on P4→NetFPGA and has demonstrated exposing functional, per-
formance and compiler bugs.

Network Accelerated Consensus. Consensus protocols are not typ-
ically the first thing to come to mind when thinking about network-
ing applications. However, P4xos [10] suggests that by leveraging
new P4 programmable network devices, significant performance
improvements can be obtained over the traditional end host only
implementations. Huynh et. al. show that in-network consensus
acceleration is also useful for making storage class memory (SCM)
fault tolerant [11]. Both of these works used P4→NetFPGA proto-
types to demonstrate the practicality of the approach.

In addition to the examples described above, there have been
many other designs prototyped using the workflow. These designs
range from simple network functions, through in-network comput-
ing to games. For example:

• Hardware-accelerated firewall for 5G mobile networks.
• Named data networking with programmable switches.
• Heavy hitter detection.
• Network-accelerated sorting.

• In-Network key-value cache.
• In-Network compression.
• IP packet fuzzer.
• A game of tic-tac-toe, with a switch opponent.

6.2 Teaching Contributions
P4’s ease-of-use makes it a good vehicle for teaching networking
concepts. The P4→NetFPGA workflow was adopted by members
of the P4 Consortium’s Education Workgroup [9], and is being used
for teaching in world-leading universities. For example, it was used
for teaching how to build a fully functioning Internet router on
the NetFPGA SUME board [13], replacing a Verilog-based course.
The students implemented the routing protocol in software on the
Linux host and the FPGA packet forwarding logic in P4. Only 25% of
the students had prior experience with Verilog and none had prior
experience with P4. Within six weeks of the course, all the students
were able to build, in pairs, a functioning IPv4 router. The students
demonstrated interoperability with other routers, building a small
topology and testing various failure conditions. By transitioning
from Verilog to the P4→NetFPGA workflow, the learning curve
was dramatically reduced, the pace of the class was accelerated, and
it was opened up to students with a wider variety of backgrounds.

7 FUTUREWORK
We are supporting, and continuing to evolve, the P4→NetFPGA
workflow. With this in mind, there are a number of aspects that can
be improved including the runtime control interface and support
for user-defined target architectures.

Looking forward, we plan to add support for P4Runtime [27],
which is quickly becoming the standard way to control P4 programs
at run time. Supporting P4Runtime will enable P4→NetFPGA devel-
opers to easily write either a local or remote control plane and will
simplify the task of integrating designs into systems that already
support P4Runtime, such as ONOS [2].

In contrast to P4-programmable ASICs, FPGAs are flexible enough
to support arbitrary packet processing architectures. In an effort to
take advantage of this flexibility we plan to add support for users
to be able to define custom P4 architectures rather than being con-
strained to use the SimpleSumeSwitch. This will allow developers
to create more expressive P4 programs as well as experiment with
their own custom modules within the architecture.

8 RELATEDWORK
High level languages such as Vivado HLS and OpenCL are increas-
ingly used to compile C-style programs onto FPGAs. Despite their
popularity, they are normally used as a productivity tool by hard-
ware engineers rather than by networking or software engineers.
The flow of these languages was originally intended to target com-
pute acceleration rather than packet processing. In principle, the
C language is more expressive than the domain-specific P4, and
could potentially be used for networking purposes. However, at
the moment, it does not expose convenient abstractions or libraries
that allow network developers to rapidly prototype new designs in
hardware.

There have been two published attempts to build P4 compilers
that target Vivado HLS [18, 32]. Similarly, P4FPGA [37] compiles
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P4 programs into Bluespec [26], another high level synthesis lan-
guage. Unlike P4→NetFPGA, these compilers require the user to
actively go through an intermediate language, and provide a com-
piler only, rather than a full workflow. Furthermore, these projects
lack community support or have since been deprecated.

Benacek et. al. developed a P4 parser compiler [1] that does
not utilize an intermediate high level language. This compiler and
workflow are completely closed source, and support only specific
platforms, and hence are difficult to use for academic research and
teaching.

Emu [36] is an extension to the Kiwi [34] compiler, which pro-
vides a way to compile .NET programs into RTL. Emu provides a
standard library that can be used to build network systems. Un-
like P4, .NET programs have not been widely adopted within the
networking community as a way to express packet processing. Ad-
ditionally, Emu programs are not inherently pipelined and hence
do not guarantee line rate performance.

9 GETTING STARTED
The global P4→NetFPGA community consists of over 200 members
from both industry and academia and it continues to grow. See
the GitHub documentation [14] to find out more and learn how to
get started. The documentation includes a set of on-line tutorials
with step-by-step instructions that walk through the process of
compiling P4 programs, running simulations, building the bitstream,
and testing on hardware [15]. Community members are encouraged
to contribute in any number of ways including, but not limited to:

• New P4 projects
• Extern function implementations
• Bug fixes or improvements
• Performance analysis tools and benchmarks
• Improved documentation

10 CONCLUSION
As P4 adoption continues to grow, more and more researchers seek
out P4-programmable targets. Unfortunately, their choices have
been mostly limited to either very low-end software emulation
tools or very high-end (and expensive) P4 programmable ASICs.
We developed the P4→NetFPGAworkflowwith the goal of bridging
this gap. The community has already demonstrated that it is indeed
possible to build low-cost, high-performance, P4 prototypes on real
hardware using this workflow.
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