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Abstract—In-network computing accelerates applications na-
tively running on the host by executing them within network de-
vices. While in-network computing offers significant performance
improvements, its limitations and design trade-offs have not been
explored. To usefully and efficiently run applications within the
network, we first need to understand the implications of their
design. In this work we introduce LaKe, a Layered Key-Value
Store design, running as an in-network application. LaKe is a
scalable design, enabling the exploration of design decisions and
their effect on throughput, latency and power efficiency. LaKe
achieves full line rate throughput, while maintaining a latency of
1.1µs and better power efficiency than existing hardware based
memcached designs.

Index Terms—Energy Efficiency, Key-value store, FPGA, In-
network computing

I. INTRODUCTION

In-network computing is an emerging area in computing,
where applications natively running on the host are acceler-
ated by running them on network devices. While hardware
acceleration is typically done on stand-alone programmable
platforms [1], in-network computing executes the applications
on programmable network devices, such as network interface
cards (NICs) or switches [2], [3]. These network devices
provide both the networking functionality and the execution
of an application at the same time [4].

In-network computing has been shown to provide through-
put and latency improvement of orders of magnitude [2],
[4]. Furthermore, the use cases are far from being limited to
networking functions; examples include consensus [5], data
processing [6], machine learning [7] and more. The most
popular use case of in-network computing for cache-based
applications (e.g., [2]). The placement of the in-network
computing device within the network saves traversals of the
network by-design [4], and is ideal for handling frequently
repeated requests for information. In this work we focus
on one class of caching applications, the caching of key-
value store (KVS), to study design trade-offs in in-network
computing.

Online services such as e-commerce and social networks,
mostly running in the cloud [8], are commonly using KVS.
KVS deployments in datacenters are often scaled-out in or-
der to increase performance [9], which leads in turn to an
increased power consumption. One of the limitations of KVS
is that it is very sensitive to latency, in the order of tens of
microseconds, end-to-end [10]. Using in-network computing
has the potential to significantly improve the performance of
KVS-based applications.

While in-network computing has attracted a lot of attention
over the last few years, most of the work has focused on ASIC-
driven implementations [2]–[4], [6]. The design trade-offs in
building in-network computing platforms, and in particular
those implemented using FPGAs, have to the best of our
knowledge, not been explored.

In this paper, we present LaKe: a Layered Key-value store
application, implemented using an FPGA and used for in-
network computing. LaKe is energy efficient, and provides low
latency, accelerated KVS. Operating either as a native NIC or
a switch, LaKe provides in-network computing functionality
both at the edge and within the network. More importantly
LaKe is a highly modular design, using multiple cache layers,
combined with multiple processing cores, to achieve high
throughput. Unlike other specialized designs [11], LaKe’s
building blocks conform with memcached and do not require
a specialized application.

LaKe explores trade-offs in design and performance by
building upon its modularity and leveraging multiple types
of on-chip and on-board memories: on-board DRAM as a
large data store, on-board SRAM for slab allocation and on-
die memory for caching and concealing latency of the external
memory devices. LaKe further uses a multi-processor archi-
tecture to explore scalability and latency trade-offs. LaKe is
implemented on NetFPGA-SUME [12], and detailed through-
put, latency and power consumption evaluations are provided,
as well as a comparison to the state-of-the-art in KVS accel-
eration.

In this paper we make the following contributions:
• We introduce LaKe: an in-network computing design,

providing KVS acceleration in parallel to networking
functionality.

• We describe the modular architecture of LaKe, using
multiple processing cores, several layers of cache and
hardware/software co-design.

• We provide a detailed evaluation of LaKe, implemented
on NetFPGA-SUME, and show that it can reach full
line rate, while providing 1.1 µs latency and ×5.1 better
power efficiency than an existing hardware based mem-
cached system.

• We explore in-network computing design trade-offs, show
the impact on performance and power efficiency of mem-
ory, caching and processing cores.

The rest of this paper is organized as follows. We first
describe LaKe’s architecture in Section II. Section III describes
the integration of LaKe on NetFPGA-SUME platform. We
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Fig. 1: The high level architecture of LaKe.

evaluate LaKe in Section IV. Section V explores design trade-
offs and Section VI discusses related work. We conclude in
Section VII.

II. ARCHITECTURE

LaKe is an in-network computing Layered Key-value store
architecture, focused on memcached. LaKe is FPGA based,
and provides both network-switching functionality and KVS-
acceleration. It achieves significant performance improvement
by using multiple layers of cache. Each cache layer provides
a trade-off between performance (latency, throughput) and
memory size. The performance achieved by LaKe reduces by
an order of magnitude the number of servers required in the
data center. In this section we explore its architecture, as shown
in Figure 1.

A. Background: Key-value Store

KVS is traditionally used for web cache and as backend
storage for web applications, using pairs of key-and-value,
stored in the host’s main memory or storage (e.g., SSD
or HDD). KVS provides simple APIs and scalability, using
consistent hashing, in comparison with rational database man-
agement system (RDBMS). The APIs consist of the primitive
GET(key), SET(key,value) and DELETE(key), issuing a read
request, a write request and a delete (writing zero) request,
respectively. Upon a new query, the KVS calculate a hash
value of the key, which allows it to retrieve a descriptor to
a respective key-value data entry. Generally, a hash function
(e.g., lookup3 [13], [14], md5, cityhash [15]) is used for the

hash calculation. Once the KVS finds an entry in the table
that matches the requested key, the value paired with the key
is returned to the client.

B. High Level Architecture

The LaKe architecture combines a hardware component
and a software component. The software component is the
memcached host software, modified to support UDP binary
protocol. The hardware component, which is the focus of this
paper, is a combined design of a networking device and a
memcached accelerator running on a single platform.

The architecture of LaKe is shown in Figure 1. While LaKe
can operate either as a switch or a network interface card
(NIC), let us assume for clarity that it is used as a NIC. Traffic
arrives to LaKe from multiple sources. A packet classifier is
used to distinguish between memcached queries and any other
types of traffic; general traffic will be sent to the host, as in
a standard NIC, while memcached queries will be sent to the
LaKe module. Queries that are a miss in LaKe’s cache and
memory, are sent to the host.

We implement LaKe on the NetFPGA-SUME platform [12].
The data plane is based on the NetFPGA Reference Switch
project, which can also operate as a NIC, and we amend it with
logic enabling memcached operation, as shown in Figure 2.
Modules unique to LaKe are marked in dark gray. Incoming
traffic from multiple ports is fed into the data plane using an
arbitration module (Input Arbiter). A packet classifier, unique
to our design, identifies the type of the packet, and sends
memcached packets to the LaKe module, described later in
this section. Non memcached traffic continues in the pipeline,
where it is merged (using a second arbiter) with packets
returning from the memcached module: both reply packets,
going back to clients, and missed queries, forwarded to the
host. The destination of the packet is set in an output port
lookup module, and packets wait in an Output Queues module
to their turn to be transmitted.

C. LaKe Module

To overcome performance bottlenecks and enable scalability
across different platforms, LaKe adopts a multi-core processor
approach for query processing. The architecture of the LaKe
module is shown in Figure 3.

Incoming queries are spread between a set of processing
elements (PEs), using a multiplexing and demultiplexing PE-
network. Each PE receives and processes queries. Once a
query is processed, the PE accesses a shared memory network
(using a second AXIS interconnect core). Three types of
memories are connected to the memory network: DRAM,
containing the hash table bucket and data store chunks (Sec-
tion II-D, Section II-E), SRAM, containing chunk information
(Section II-E), and CAM, serving as a look up table (LUT)
for retrieving key-value pairs (Section II-F).

Figure 4 illustrates the request-response process of a query
in LaKe. As a new query arrives, the PE parses the packet and
extracts the command, key and value. Next, the hash of the
extracted key is calculated. In our implementation, CRC32 is
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used as the hash function. The hash value serves as a pointer
to an address in the DRAM, holding a descriptor (hash table
bucket) pointing to the key-value pair in the memory. If a key
exists in LaKe’s memory, it is considered a hit, otherwise it
is a miss. Upon a SET command that is a hit (Figure 4(a)),
both the hash table and the key-value pair data are updated in
the DRAM. If a SET command arrives with a new key (miss,
Figure 4(b)), the PE assigns it to a chunk using a list of free
descriptors stored in the SRAM and pointing to empty chunks.
As a write through policy is used, any SET query is also sent
to the host’s memcached server.

For a GET query that is a hit, a reply is prepared in the
Packet Deparser and returned to the client. Otherwise, the
request is forwarded to the host memcached server through the
switch datapath (Figure 4(c)) and using a DMA engine [12].
The host then sends a reply to LaKe (Figure 4(d)), which
updates the key and value in the cache and DRAM before
sending the reply to the user.

D. Hash Table

The hash table is used to store descriptors pointing from a
hashed key to the address in memory of the actual key-value
pair. As such, it is a critical component in the design. The
data structure of the descriptors in the hash table is shown in
Figure 5. The descriptor size is 64bit, which is performance
optimized: the DDR3 SoDIMM on the board uses a bus width
of 64bit and a burst size of eight, which leads in turn to a
bus width from the DDR3 controller of 512bit. This allows
in a single access to read eight descriptor entries, enabling 8-
associativity. To reduce the number of accesses to the DRAM,
a key’s length is compared to the key’s length in the descriptor,
and only if they match the PE attempts to access the DRAM
and read the key-value chunk.
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Fig. 4: The request-response process of a query in LaKe.

E. Memory Management

Memcached builds upon a slab allocator to efficiently use
the memory [9], [16]. This approach is also taken in hardware
based designs, as well as in LaKe, enabling to handle variable
key- and value-length.

A slab allocator is implemented using an SRAM-based
memory, storing addresses of unused chunks. To reduce access
time to the SRAM, LaKe uses a small cache (implemented as
a FIFO), which pre-loads the next available addresses from
the memory. The number of entries in the SRAM can be
calculated using the following formula:

∑n
k=i SkNk ≤ Cmem,

where Sk, Nk and Cmem denotes the size of chunk, the
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number of chunks and SRAM capacity, respectively. We use
multiplications of 64B as slab size, and support 64B, 128B,
256B and 512B chunk sizes in our prototype. The minimum
size slab is determined by the width of the memory network
datapath: 512bit.

Shared cache To conceal DRAM access latency, LaKe
uses a shared cache for each data context: hash table and
data store. These caches are located in front of the DRAM
controller, rather than inside a PE, in order to enable PE
scalability and avoid holding data context (such as CPU
process) inside a PE. In this manner, frequent key and value
are immediately returned from the caches. Each cache has
in our prototype 1024 entries, implemented using a BRAM.
We employ write through as the update policy, thus cache
coherency is maintained for both cache and DRAM.

DRAM access: Random access to the DRAM has a non
negligible and variable latency, which can stall PEs. To attend
to this latency we integrate a small cache before the DRAM
(e.g., 64B cache line, write through, direct-map, total capacity
64kB). Without the cache, we measure the DRAM controller’s
access latency (using Xilinx MIG, running at 933.33MHz) to
be around 115ns in a zero load test, and to be up to 650ns
under high load.

PE scalability: LaKe applies a modular, scalable approach
to KVS acceleration. The number of PEs supported by the
design starts at one and scales up, with five PEs sufficient to
support per-port full line rate. Beyond physically implement-
ing a variable number of PEs, LaKe also allows to control
on-the-fly the number of PEs used, balancing workload and
power efficiency.

F. Memcache Protocol

Memcached systems [9] generally use the memcache proto-
col. There are two memcache protocol variants: ASCII based
and binary based. Our implementation uses the binary variant.
The challenge using the memcache protocol is that key-value
pairs cannot be identified in responses from the host. For
instance, a GET request missed in the hardware and sent to
the host will have a query response returning with the value
but without the key. Thus, cache systems cannot handle only
response packets; it is required to learn and save a request
query’s information.

To associate a key with a returned value, we use memcache
protocol’s opaque field and source UDP port number. Mem-
cache protocol uses a 32-bit opaque field, and memcached

systems use the same opaque value in both request and reply.
We use a lookup module to match returned values from a host
with their paired keys. The LUT is implemented using a CAM,
where we query using the opaque value and the source UDP
port, and the reply is the original query’s key. The keys are
updated every time a GET query is a miss in the hardware
and forwarded to the host.

III. IMPLEMENTATION

Our target board is NetFPGA-SUME [12], which is
equipped with Xilinx Virtex-7 690T FPGA, 8GB DDR3
SDRAM modules (4GB×2, upgradable to 16GB×2), three
QDRII SDRAM modules (27MB) and more. The NetFPGA
Reference Switch project is the baseline datapath, integrated
with the memcached subsystem, as shown in Figure 2. The
project is implemented in Verilog HDL, using Xilinx Vivado
2016.4 design flow1.

The current implementation of LaKe supports up to thirteen
PEs, though only five PEs are required to achieve full line rate.
The limitation on the number of PEs is due to the number
of slave interfaces available on the AXI-Steam interconnect
cores, used by the PE interconnect and the memory intercon-
nect (16 slaves, where SRAM, DRAM and CAM must always
be connected). The core clock frequency is 200MHz.

Using five PEs, the fully implemented prototype consumes
only 35.65% of the Block RAM (BRAM) and 52.33% slice
utilization2. On a higher end FPGA this number is significantly
smaller, allowing scalability to higher data rates: using 13 PEs
a query rate of 42.9Mqps is achievable.

A. Integration with NetFPGA Datapath

LaKe is integrated with the NetFPGA switch/NIC datapath
as shown in Figure 2. LaKe gives priority to normal traffic
over memcached traffic; if the memcached packet rate is high
and over-subscribes the cache sub-system, instead of throttling
normal traffic LaKe drops memcached packets. Consequently,
normal traffic is not affected by LaKe’s performance. Outgoing
packets from LaKe module go through an arbiter, which
arbitrates between memcached packets and normal packets,
forwarding them to an Output Port Lookup module.

As an in-network computing platform, LaKe provides
caching for memcached. Consequently, SET and DELETE
requests need to be updated in the host’s memory. In our
implementation, SET and DELETE requests are copied to both
paths within the FPGA: to LaKe and to normal traffic path.
Specifically, while a SET request to LaKe updates or adds
new cache contents to the shared-cache and DRAM module
on NetFPGA, the SET request sent through the normal traffic
path updates or adds new content to the host memory, running
the memcached server (software). In addition, a reply from
the host to a GET request missed in the hardware, also goes
through the normal traffic path and to LaKe’s module, updating
the local cache contents.

1The version supported by the NetFPGA project.
2Note that the NetFPGA Reference Switch uses 13.91% of the Block RAM

(BRAM) and 17.9% slice utilization



IV. EVALUATION

The evaluation of LaKe covers two aspects: absolute perfor-
mance, and the exploration of design trade-offs. The evaluation
results are summarized in Table I.

A. Absolute Performance

We evaluate the absolute performance of LaKe based on
several performance metrics: throughput, latency and power
efficiency. We compare the performance with memcached
(v1.5.1), a software implementation, and Emu’s memcached
implementation [17], a hardware-acceleration of memcached
using the binary protocol. Emu is selected as it is compara-
ble, being available open-source on NetFPGA-SUME, yet it
does not support networking functionality, only memcached-
acceleration. Emu also supports only an on-chip cache, and
cannot forward missed query to a server.

1) Test Setup: The memcached server uses Intel Core i7-
4770 CPU, 64GB RAM, running Ubuntu 14.04 LTS (Linux
kernel 3.19.0) and a NetFPGA-SUME card running LaKe.
OSNT [18] is used for traffic injection. A 10GbE port is con-
nected from OSNT to the LaKe card. GET requests, including
4B key and 8B value, are injected at 10Gbps. Throughput
is measured on a second granularity. For comparison with
software-based memcached, we amended the memcached soft-
ware to support binary protocol over UDP.

a) Maximum Throughput: For maximum throughput, we
compare all three designs using a warmed cached. LaKe
achieves a throughput of 13.1Mqps (query per second) when
all the queries are hit in the shared-cache, as shown in
Table I. This is ×6.7 improvement compared with Emu [17],
and ×13.6 improvement compared with memcached running
on the host. Note that a request query is 74B in size,
hence the maximum theoretical throughput of 10GbE link
is 13.297Mqps (taking into account Ethernet’s preamble and
inter-frame gap). The throughput achieved is equivalent to
10GbE line rate, using the given query size, and requires only
5 PEs.

b) Latency: We use an Endace DAG card 10X2-S (4ns
resolution) to measure queries’ latency. A software-based
client is used to generate queries, and the DAG measures the
isolated latency of LaKe, client excluded. Despite supporting
both memcached and networking functionality, as well as
using the DRAM, LaKe’s latency on a hit (1.16µs) is better
than Emu (1.21µs), thanks to the small shared-cache (64kB)
in front of the DRAM. When queries are miss in the shared-
cache, and hit in the DRAM, the latency is 5.6µs. Emu does
not support cache misses. LaKe’s latency is ×205 better than
a host-based memcached on a hit, and ×42 better on a miss in
the cache and a hit in the DRAM. A miss in both cache and
DRAM means LaKe and a host-based memcached will have
about the same latency, as LaKe will forward the query to the
host. The only penalty is the first look up in the DRAM of
the key.

B. Scalability

LaKe scales up both in throughput and resources.

Area and Resources: We implemented up to six PEs while
maintaining 200MHz core frequency, as shown in Figure 6.
Each PE utilizes around 3% of chip slices and 2% BRAMs.
These values include also the interconnection networks, as
each PE is connected with both PE-network and memory
switch. The small overhead in resources taken by each PE
enables scaling the number of PEs used by LaKe with little
effect on resource consumption.

Throughput: We evaluate the throughput scalability of
LaKe using OSNT [18]. First, the cache is warmed using a
SET request. Next, OSNT generates GET requests, matching
the warmed cache, using a 4B key, and returning an 8B value.
The throughput scalability as a function of the number of PEs
is shown in Figure 7. As the figure shows, LaKe can handle
up to 13.1Mqps using five PEs, when the queries are hit in
the shared-cache in front of the DRAM. Each PE processes
up to 3.3Mqps. The bottlenecks on throughput growth are
the memory interconnect core and memory bandwidth. The
throughput grows linearly with the number of PEs until
reaching these bottlenecks. On a platform with more memory
interfaces, or with a higher speed memory, a higher throughput
can be reached.

Core frequency: LaKe is a pipelined design. As such, its
throughput depends on its packet processing rate. This packet
processing rate, which is shared for the networking data plane
and the LaKe memcached module, is fully achieved at a core
frequency of 160MHz, as shown in Figure 9. Below this
frequency, the NetFPGA platform has a performance limitation
in its 10GbE ports 3. Mean latency drops as core frequency
increase: this is as the number of stages in the pipeline is
maintained, but the duration of each clock cycle is reduced.

Hit ratio: The hit ratio in the cache plays a critical role
in the performance of an in-network computing design. In
Figure 10 we demonstrate the effect of the hit ratio on the
performance of LaKe. The x-axis indicates the hit ratio of the
keys in the on-chip cache. The y-axis indicates the maximum
throughput (left) and mean latency (right). Mean latency is
measured at a constant query rate of 10Kqps, for all hit ratios,
since as we show in Section V, the latency is subject to change
under different query rates. The maximum latency, measured
across all hit-ratios, is only 1.9µs. The effect of the hit ratio
is mandatory to in-network computing solutions, as the size
of the on-chip cache directly affects the performance of the
device. In devices where the memory capacity is in the order
of megabytes to tens of megabytes [19], this becomes a crucial
element.

Figure 11 continues the exploration of hit-ratio effects, by
exploring the effect of the hit ratio in the DRAM, and LaKe as
a whole. The x-axis in Figure 11 indicates the overall hit ratio
in both on-chip cache and DRAM. We fix the hit ratio in the
on-chip cache to 10%, and vary the hit ratio in the DRAM,
with all queries missed in the DRAM being sent to the host.
As the results show, throughput linearly increases with the hit
ratio in the DRAM.

3https://github.com/NetFPGA/NetFPGA-SUME-live/issues/36
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C. Power Efficiency

We use a wall power meter to measure power consumption.
We calculate power efficiency as E = T/W , where E,
W and T denote power efficiency, power consumption and
throughput, respectively. LaKe achieves 242.962 kqps/Watt
using five PEs at full line rate. This is ×5.1 improvement
compared with Emu.

We investigate dynamic power consumption by measuring
how power consumption varies as a function of throughput.
Power consumption is normalized to 0W under zero load,
i.e. the static power consumption. The dynamic power con-
sumption takes up to 3.4W on our LaKe modules, while
software based memcached consumes a maximum of 58.2W
dynamically. Thus, LaKe reduces dynamic power consumption
by more than an order of magnitude. Moreover, the power
efficiency of LaKe scales linearly with throughput (as shown
in Figure 8), much better than a host’s power efficiency does.
To put it in order words, LaKe’s power consumption changes
very little under load, which means that it is most efficient
when the query rate is maximal. Even under a low query rate,
LaKe’s power efficiency is better than running on a host.

V. DESIGN TRADE-OFFS

The previous section has introduced the absolute perfor-
mance of LaKe. In this section we focus on trade-offs in

the design of LaKe, and extrapolate from them to in-network
computing designs at large.

In-network computing applications tend to implement cache
using only on-chip memory [2], [4], [20]. For KVS applica-
tions, this leads to a very small percentage of keys that can
be cached: in the orders of thousands to tens of thousands
on an FPGA, and in the order of hundreds of thousands to a
million on an ASIC. For example, NetChain [3] suggests that
up to 10MB on a Tofino switch can be used as a cache. This
number of cache entries is insufficient for large KVS systems:
in Facebook, between a billion and hundred billion unique
keys are accessed every hour [21], with 18.4% to 74.7% of
these keys accessed within 5 minutes (For Facebook’s different
workloads [21]). It is therefore important to understand the
effect of using external memories on in-network computing
performance.

So far the evaluation used a fully-featured LaKe: using
BRAM, SRAM and DRAM. Next, we check the effect of each
on the performance. Note that for this discussion we employ
a single DRAM module (4GB) which utilizes both hash table
region (2GB: 268M entries) and a data store region (2GB:
33M entries as 64B chunk), and consumes 4W. When we use
BRAM instead of DRAM, the number of hash table entries and
data store entries are 4096 entries and 512 entries, respectively.
We also employ two SRAM modules (total 18MB) to manage



TABLE I: Performance comparison.

System Average latency [µs] Throughput [Mqps] Power efficiency [kqps/Watt.]
memcached(software) 238.84 0.962 9.938
Emu (hardware) [17] 1.21 1.932 47.121
LaKe (shared-cache) 1.16 13.120 242.962

free-list on slab allocation. When we use BRAM instead of
SRAM, the number of free-list addresses stored is 144 entries.

When only the BRAM is used, and the SRAM and DRAM
memory controllers are taken out, the maximum power con-
sumption of LaKe is 16W including NetFPGA-SUME card
— almost identical to a standalone switch, and the maximum
throughput is 13.1Mqps. Under these circumstances we use
a BRAM-based 1k entry cache as hash table and data store
instead of a DRAM, and use BRAM-based FIFO as slab
allocator instead of an SRAM.

Adding the SRAM adds 6W and holds 4.7M chunk ad-
dresses, which are updated when a DELETE operation moves
a specific chunk to the free list. A BRAM-based FIFO placed
in front of the SRAM is used to hide SRAM access latency, but
is shallow in comparison with the SRAM. One can therefore
trade the 6W SRAM power consumption with the number of
available chunks on LaKe. Alternatively, one can use a DRAM
to store chunk address: this solution is cheaper and more power
efficient than using SRAM, but results in an increased latency
and considerably lower throughput.

The use of DRAM as a second level cache increases the
number of keys hit in LaKe. However, as can be expected,
DRAM access does not provide the same performance as
on-chip cache access. As shown in Figure 7, the maximum
throughput using DRAM only is 6.3Mqps (using five PEs ),
lower than using the shared-cache. To understand the through-
put of the DRAM, we isolate the DRAM from the LaKe mod-
ule, and consider its latency under low and high utilization. As
Figure 12 shows, while the latency is almost constant without
a load, under high utilization the latency almost doubles.
As memcached accesses to the memory are random and not
sequential, as keys are not requested in a sorted order, this
double-latency explains the 6.3Mqps throughput achieved.

While using the DRAM may seem as a disadvantage, it is
in fact an advantage: access to the DRAM is only upon a miss
in the cache, and replaces an access to the host memory (as in
a device without a DRAM). In this manner, significant time
(×42) and dynamic power (×17) are saved.

VI. RELATED WORK

In-network computing has emerged as a mean to reduce
data processing loads from the host, as data processing de-
mands keep increasing [23]. Use cases included, for example,
consensus [4], [5] and coordination [3]. Caching, and KVS
in particular is a representative and popular in-network com-
puting use case [2], [24]. Programmable switch ASICs (e.g.,
Barefoot Networks Tofino), enable these devices to achieve
high performance — both throughput and latency wise. Yet
until such devices have significant memory resources attached,
they will not be able to completely offload KVS applications,
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Fig. 12: The cumulative distribution function of READ latency
from the DRAM, for a Random access, under zero and high
load. Strict, Normal and Relax are the three memory controller
access modes [22].

as discussed in Section V. To the best of our knowledge,
this paper presents the first implementation of KVS as an in-
network computing solution.

Hardware-based KVS has been actively researched along
with the rise of cloud computing [1], [13], [14], [25]–[33],
though not while providing switching functionality. It was
previously shown that offloading KVS into dedicated hard-
ware, such as FPGA or ASIC, benefits in terms of latency,
throughput and power efficiency. Although hardware based
memcached appliances [14], [27] were shown to achieve
10GbE throughput, the cache capacity was small, limited by
physical resources and FPGA I/O constraints. In contrast, our
work focuses on a layered cache architecture, benefiting from
an integration with the host machine. As long as queries
are a hit in the FPGA-NIC, the CPU load is significantly
reduced. Further, LaKe also serves as a standard network
device, avoiding additional hardware required by dedicated
acceleration solutions.

KV-Direct [11] demonstrated a SmartNIC achieving a high
query rate (e.g., ∼180Mqps), but was limited to KVS oper-
ations only, was a proprietary solution using 8B query size,
batching multiple queries in a single packet, and processing
vector queries. LaKe supports the highly popular memcache
protocol and different slab sizes, offering a far richer feature
set, as well as standard networking operation.

Energy efficiency in KVS was also researched in software-
based solutions [15], [24], [34]–[38]. Software-based solu-
tions improve performance and power efficiency by using the
CPU more effectively. However, software-based solutions do
not improve latency and power consumption, while LaKe has



improved latency, throughput and energy efficiency dramati-
cally.

VII. CONCLUSION

While network bandwidth is ever increasing, computing
performance is leveling off. In-network computing is providing
hardware acceleration using network devices already existing
in the network. While ASIC based in-network computing
offers order of magnitude higher throughput than running on a
host, we show that for realistic KVS workloads external mem-
ories are required, and their cost in power and performance is
high. We presented LaKe, a new architecture for energy effi-
cient in-network KVS. LaKe can serve as a switch or a NIC,
while presenting a multi-core, multi-level cache architecture,
that balances throughput, latency and power efficiency. LaKe
achieves ×17 better energy efficiency than running on a host,
with ×6.7 to ×13.6 higher throughput, maintaining two orders
of magnitude better latency. LaKe does all that without giving
up memcached functionality and while supporting a large and
scalable number of keys.
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