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ABSTRACT

Bugs in network hardware can cause tremendous problems. How-
ever, programmable network devices have the potential to provide
greater visibility into the internal behavior of devices, allowing us to
more quickly find and identify problems. In this paper, we provide
a taxonomy of data plane bugs, and use the taxonomy to derive
a Portable Test Architecture (PTA) which offers essential abstrac-
tions for testing on a variety of network hardware devices. PTA
is implemented with a novel data plane design that (i) separates
target-specific from target-independent components, allowing for
portability, and (ii) allows users to write a test program once at
compile time, but dynamically alter the behavior via runtime con-
figuration. We report 12 diverse bugs on different hardware targets,
and their associated software, exposed using PTA.

1 INTRODUCTION

Bugs in network hardware can result in financial loss, security
breaches, or significant downtime for essential services. Unfortu-
nately, despite extensive testing, these bugs can be very difficult to
find [34].

Example. As an example, imagine that a device drops packets when
the input traffic exceeds a certain rate. How would we find and
diagnose this bug? This sounds like it would be a simple bug to catch.
After all, we would certainly notice packet drops. In reality, the bug—
which we found in the NetFPGA [27, 50] reference projects—was
not discovered for more than a decade after the platform had been
introduced.

The root cause of the bug was that the input arbiter in the design
was not work-conserving, i.e., packets were held in an input queue
even when the output was idle. However, the bug did not reveal
itself on the NetFPGA 1G board with 4x1Gbps interfaces, or on the
SUME board with 4x10Gbps interfaces. It was only revealed when
the design was ported to a 2x100Gbps Alveo board. The bug in the
design was passed from one generation to the next, and the capacity
of the network interface masked the defect in the internal design.

So, how could we have found and fixed this bug sooner? There
are a few immediate observations that we can make.

First, the bug only appears when the traffic rate exceeded a thresh-
old, in this case, ~40Gbps aggregate throughput on SUME. So,
software-based approaches like simulation or emulation, which can
slow the execution of a program by a factor of 10° [10], would not
help. Instead, we need a test framework that can generate and receive
traffic at line rate.

Second, finding this bug requires internal access to the data plane.
Even if we could externally generate and send traffic to the device
under test at the target rate (e.g., using an Ixia [21] or Spirent [41]
platform), we need a way to distinguish a limitation of the network
interface from the inefficient implementation of the input arbiter.
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Third, we see that the same reference design was used on several
hardware targets, including NetFPGA 1G, 10G, SUME, and Alveo.
Writing tests is time intensive, and having to repeat test-writing
efforts for each target would be onerous. Just as the reference design
can be ported across targets, we want the tests to be portable across
hardware targets.

Although we have focused on an FPGA in this example, similar
bugs and observations hold for programmable ASICs, although at
greater scale. Consider trying to replicate the same test scenario on
a Tofino 2 ASIC, which has 128x100G ports.

Prior Work. Verifying, debugging, testing, and validating network
hardware is a well studied area. A range of software-based ap-
proaches have been proposed, including simulation or emulation
and formal verification [16, 26, 42]. However, none of these offer a
comprehensive solution. Simulators or emulators may not faithfully
model actual deployments, and, as already mentioned, cannot test
scale-related bugs. And, verifiers cannot catch several types of bugs,
such as bugs in the compiler, performance bugs, or bugs to due to
under-specification in the language.

Therefore, network operators often augment software-based tech-
niques with hardware-based testing. For this purpose, equipment
vendors such Ixia [21] and Spirent [41] sell highly-specialized plat-
forms, which can generate and receive traffic at line rate. Unfortu-
nately, these devices provide limited visibility because they function
as external black-box testers. Moreover, the cost of such platforms
is considerable. Prior research efforts [4, 37, 49] offer lower cost
solutions with similar intents, but they are limited, in terms of fea-
tures, scale, and performance, e.g., OSNT [4] does not scale beyond
4 ports, and none of them work with non-Ethernet packets.

Problem and Approach. This paper addresses the problem of how
to develop a high-performance, comprehensive, portable test frame-
work for network devices. The key idea is to leverage a portion
of the resources in programmable network hardware—including
SmartNICs and programmable ASICs—for testing. Programmable
network hardware is an attractive option for use with testing for
two reasons. First, it can send and receive traffic at high rates
by design. Second, it can be adapted for use-cases beyond tradi-
tional forwarding, such as has been done with in-network computing
[11,12,22,23,29].

Challenges. Using programmable network hardware as testing de-
vices, rather than forwarding devices, presents a significant chal-
lenge, because testing and forwarding are fundamentally different.
In particular, we identify three, high-level challenges: (i) active vs.
reactive logic, (ii) dynamic processing behavior, and (iii) portability.

First, at the most basic level, forwarding devices are reactive,
meaning that they execute logic only on the arrival of an incoming
packet. In contrast, testing is an active process. A tester generates test
stimuli in the form of test packets, and then checks a post-condition.



Second, testing devices require much more flexibility than for-
warding devices. When used for forwarding, the data plane function-
ality of programmable NICs and switches only changes in limited
ways, e.g., it might forward packets out a different port, depending
on control plane configurations. But, the forwarding pipeline is not
altered during operation.

In contrast, exhaustive testing often requires significant adaptation
and permutation, dynamically changing the behavior depending
on the needs of the test. As an example, imagine that we want to
generate a variety of packets with different header sizes, similar to
how Dumitru et al. [14] check for security exploits. Changing the
data plane implementation of the test program for every permutation
would result in significant overhead, in terms of compilation and
installation, which can take hours on some platforms.

Third, the test architecture must be portable across a range of
heterogeneous target devices. To provide portability, we need to
identify a set of abstractions that are flexible and powerful enough
to test for a variety of possible data plane bugs, but can be generally
implemented on a range of devices.

Contributions. To address these challenges, we propose a new data
plane architecture for data plane testing. We use the term data plane
architecture in the same way that it is used in the P4 programming
language [6]. It identifies the programmable blocks and their data
plane interfaces. Essentially, it is the contract between the data plane
program and the hardware target.

The P4 open-source community has begun to standardize a few
data plane architectures, including the Portable Switch Architecture
(PSA) [35] for network switches, and the Portable NIC Architecture
(PNA) [7] which models NICs. This paper introduces the Portable
Test Architecture (PTA).

Overall, this paper makes the following contributions:

o The requirements for PTA are derived from a taxonomy of bug
types in programmable network devices and we detail bugs that we
have found in commercial and open-source software and hardware
using the tool.

e Driven by the requirements of the bug taxonomy, PTA offers a
small but powerful set of abstractions to support debugging.

o PTA has a novel data plane design that: (i) separates target-specific
from target-independent components, allowing for portability, and
(ii) allows users to write a test program once at compile time, but
dynamically alter the behavior via dynamic re-configuration.

e PTA complements prior work on automatic test packet genera-
tion [31], fuzz testing [3, 39, 44], and software validation [26], by
providing a framework for running workloads generated by those
tools on actual hardware. To demonstrate how PTA can be used
in conjunction with existing tools, we have developed a proof-of-
concept integration with P4v [26]. Users can extract assumptions
and assertions from an annotated P4 program, and map them to a
hardware test configuration.

e PTA uses programmable network hardware for testing, which
differs from traditional forwarding in key ways. We present a set
of lessons we’ve learned and assumptions that were challenged in
the design of the framework.

o PTA is publicly available under an open-source license [36].

Key Results. We have implemented PTA for two different hardware
targets: the NetFPGA SUME platform [50] and the Barefoot Tofino
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ASIC. We have used the framework to evaluate several P4 programs
and two P4 compilers. Using PTA, we were able to identify 12
diverse bugs. These bugs are drawn from a broad spectrum of classes
of bugs, demonstrating that PTA provides a comprehensive testing
solution. Moreover, these bugs were in heavily-used, heavily-tested
commercial and open-source systems.

2 REQUIREMENTS AND CONSTRAINTS

The design of PTA navigates the tension between developing an
expressive framework that can test for a wide range of bugs, but
can be implemented on a diverse set of hardware targets. Below,
we discuss these requirements in more detail by first developing a
taxonomy of error types and then discussing the constraints imposed
by different hardware.

2.1 Data Plane Bug Taxonomy

A wide range of bugs can occur in network devices. These bugs can
be due to incorrect program logic (i.e., functional bugs); or due to
problems in compiler, target hardware architecture or others. Below,
we provide a taxonomy of the types of bugs that a test framework
must be able to detect. These error types provide requirements that
motivate the design of PTA. Note that although PTA can be used
to test both fixed-function and programmable hardware, our taxon-
omy highlights bugs that may be unique to programmable network
hardware (e.g., compiler bugs), and may not be comprehensive.

Functional Bugs. A functional bug is one in which the functionality
provided by the network device is not the same as the functionality
intended by the programmer. Functional bugs can occur in both the
data plane and in the control plane. An example data plane bug
would be not supporting IPv6 headers where such functionality was
supposed to be supported. An example control plane bug would be
not filling all the required entries in a given size table.

Performance Bugs. Performance bugs are related to aspects such
as the maximum throughput or packet rate of a certain design, how
certain packet sizes affect the throughput, whether congestion control
is handled properly, and more. For performance testing, for example,
the user must be able to continuously fill the pipeline with packets
of a certain size and check that no packets are dropped or lost at
the output. Another performance aspect is the ability to mix packet
sizes in explicit ways, which exercise different parts of a design (e.g.,
programmable data plane, schedulers, memory access).

Compiler Bugs. Although compilers are tested with scrutiny, there
may be bugs. There are at least two classes of compiler bugs. The
first class of errors regards functionality bugs, e.g., where a language
feature is supported but the implementation is missing, or the func-
tionality is implemented incorrectly. A second class of errors covers
the compliance with the programming language specification.

Under-Specification Bugs. The extent of a programming language
definition, and the diversity between target platforms, leads to cases
where the language specification is not detailed, either intention-
ally [1] or not. This can lead to unexpected or unintended behaviors,
for example, if the specification does not detail whether the initial-
ization of a header should be to zero, or if can remain unpopulated
and random.
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Architecture Bugs. Similar programs may target different data
plane architectures, and even perfect programs may be suscepti-
ble to bugs in the underlying device architectures. One immediate
class of such device architecture limitations is access hazards to
tables, such as read-after-write. A second class of bugs uncovers lim-
itations of the data plane architecture, such as a proprietary module
(e.g., an extern) that is not responding within the expected time. A
sub-class of bugs has to do with the integration of different modules
in the architecture, such as caused by a mismatch in the connection
of interfaces.

Security Vulnerabilities. Network devices can suffer from security
vulnerabilities just like any other device, and programmable network
devices introduce new threat vectors. Security vulnerabilities are
commonly the result of a different class of bugs, and are highlighted
due to their importance and the need for targeted tests. A test frame-
work should allow users to quickly and efficiently test a large number
of such security threats. One such example would be looking for the
“Meltdown” [28] equivalent of a programmable data plane: can you
craft a packet that would allow you to read the contents of previous
packets, various tables, or memories? Another example is backdoors
in the program, whether in the original users code or introduced as a
by-product of the compilation process. The hardware test can reduce
the security risk by testing the deployed program as it runs on the
platform.

2.2 Heterogeneous Targets

The diversity of data plane bugs implies that a testing architecture
should be flexible and expressive. However, the design of the archi-
tecture is necessarily constrained by the capabilities of the target
hardware. We briefly summarize these below. We focus our dis-
cussion on two devices that are on opposite, extreme ends of the
spectrum: FPGAs and ASICs. Other types of network devices, such
as those based on System on Chip (SoC), fall between these two
extremes [45].

FPGA:s. Field Programmable Gate Arrays (FPGA) have a given
set of resources, but provide users with extreme flexibility and full
programmability. As long as a design does not exhaust resources,
and users can compile the design while maintaining the constraints
they set (e.g., on timing), FPGAs can implement almost any logical
operation, with different levels of complexity.

ASICs. Like FPGA, ASICs also have a finite amount of resources.
But, in contrast to FPGAs, they have a set device architecture. While
ASICs have become programmable—significantly more so than in
the past—their programmability is constrained to the architecture.
Note that CPU architectures impose similar constraints, e.g., pro-
gramming on an x86 CPU is different from programming an ARM
core or RISC-V. The main advantages of switch ASICs over FPGA-
based switches is that they achieve much higher clock rate (and
therefore higher throughput), offer increased scale (e.g., number of
ports), and use resources more efficiently.

Constraints. These differences between hardware targets hinder
portability. It is often said that P4 allows users to write target inde-
pendent programs. But, this is not true. A program written in P4, like
programs written in other languages, is tied to the target architecture.
Examples of architecture specific properties include externs, initial-
ized values (of registers, memories and other stateful elements), and

Abstraction Description

Load_Image Load the image file to the target

Init_Counters Initialise the counters in the target
Init_Registers Initialise the registers in the target
Generate_Packets Generate test packets

Collect_Results  Collect raw results from target’s registers

Table 1: PTA’s user-facing abstractions.

timestamp taking, among others. Portability issues are not always
a property of complex hardware design. They can result from mun-
dane aspects, such as the number of bits assigned on the metadata
bus to indicate the egress port number (which may differ between
an 8-port switch and a 256-port one, in order to minimize resource
usage).

3 DEBUG ABSTRACTIONS

One of the main challenges in designing PTA is identifying the core
set of abstractions to support debugging. We adopt a requirement
driven design process. Based on the taxonomy in the previous sec-
tion, we systematically explored the necessary abstractions for each
of those classes of bugs. The set of abstractions is intended to be
minimal, so that it can be readily supported by diverse hardware.
At the same time, it is intended to encompass the set of functions
needed for testing.

To illustrate the process, we first walk through the running example—

i.e., the input arbiter bug from the NetFPGA reference project from
Section 1—before summarizing the complete set of PTA debug
abstractions.

3.1 Requirement Driven Design

So, how might a developer find and isolate the performance bug in
the input arbiter? Because the module is (incorrectly) not work con-
serving, we clearly need to be able to generate packets at data-path
rate, creating controlled back-to-back arrival events to the arbiter.

Many bugs (e.g., functional, compiler) would depend on a par-
ticular data plane program, suggesting that the debug framework
needs a method to load a data plane image. However, in this case,
the bug is in the architecture of our target device, and therefore
independent from the data plane program that we would load. To
test the architecture, we need access to the low-level abstractions
offered by the hardware, including the metadata bus, stateful ALUs,
and any externs provided by the architecture of additional hardware
modules.

We need modules to initialize and check the values of stateful
elements, e.g., counters and registers. This allows us to confirm the
number of packets sent and processed by the pipeline, and more
generally, application specific logic.

Finally, to detect the presence of dropped packets (again at line
rate), we need a way to collect and inspect output packets.

3.2 Core Abstractions

By following this requirements driven design process, we identify
two classes of abstractions: user-facing abstractions (Table 1) and



Abstraction Description

Metadata_Bus
Stateful_ALU

Extern

Layout of the metadata bus
Architecture of the Stateful ALUs
Architecture of the Extern modules
Register_Read Interface for reading hardware registers
Register_Write Interface for writing hardware registers

Table 2: PTA’s back-end abstractions.

back-end abstractions (Table 2). User facing abstractions are used to
specify the functionality of a test. Back-end abstractions represent
the architecture of the target device.

User-Facing Abstractions. Users writing tests will be using user
facing abstractions, similar to functions. As these abstractions are
not target-specific, a test will be written only once. The abstrac-
tions are used to load the program image (Load_Image), initialize
registers (Init_Registers) and counters (Init_Counters)
and to generate and collect packets (Generate_Packets and
Collect_Results).

Note that although packet generation is exposed via user-facing
abstractions, it is adapted to the target (e.g. to vary transmission rate)
using back-end abstractions that are transparent to the user.

Back-End Abstractions. Back-end abstractions are used to spec-
ify a network-device target, and are called by any tests using this
target device. The back-end abstractions library includes both the
layout of the metadata bus (Metadata_Bus), that is used by PTA
as a configuration channel, and the architecture specification of both
stateful ALUs (Stateful_ALU) and extern modules (Extern).
Since the hardware components of the framework are usually ac-
cessed through a register interface, PTA provides two additional
abstractions for reading and writing registers (Register_Read
and Register_Write).

4 PORTABLE TEST ARCHITECTURE

Building on the core abstractions, PTA provides a comprehensive
hardware data plane testing solution. PTA is programmable, meaning
that the tool can be customized to the particular testing needs of the
user for a diverse set of bugs. It is also re-configurable, meaning
that new tests can be run via dynamic re-configuration (e.g., using
register access), rather than re-programming (e.g., requiring a new
image file). PTA allows for integration with existing tools, providing
prior work on automatic test packet generation [31], fuzz testing [3],
and software validation [26] with a path to run on hardware. When
used to test devices with programmable data planes, PTA allows
access to internal state, providing detailed fault localization. PTA
allows users to test network devices in real time at full line rate,
and test results are reproducible. We expect PTA to be deployed out
of band, i.e., in parallel to live traffic. It does not incur additional
latency or otherwise alter the traffic.

4.1 Overview

Imagine that a user wants to verify a certain data plane. We assume
that the user has some information about the data plane functionality,
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e.g., the P4 program, but not all information of the dataplane, e.g.
hardware-target’s micro-architecture. The user will need to devise
a test plan that covers the range of potential bugs, covered in Sec-
tion 2.1. Most of these tests are generic (e.g., performance tests)
while some are use-case specific (e.g., P4-program specific func-
tional tests). Next, following this plan, imagine that the user wants
to verify that this data plane runs at line rate for different packet
sizes. To run this test, we need three components: a packet generator,
to inject packets into the data plane; an output checker, to assert
that post-conditions hold at the end of the test; and a management
component, to run the test. All these components are illustrated in
Figure 1, which shows the high-level design of PTA. Both the gener-
ation and checker modules are implemented in hardware, while the
management component is a set of software programs.

Even for this simple example, there are a range of parameters and
scenarios to be tested: How many packets should be sent? What sizes
should the packets be? At what rate should be packets sent? And, at
what rate do we expect the output packets to arrive? What protocols
are being used in the packet headers? Hand-writing tests for each of
these scenarios would be tedious, and possibly error-prone.

To help reduce the burden, PTA separates tests into two parts: the
programmable part and the re-configurable part. The programmable
part can be thought-of as data plane specific. Users can, for exam-
ple, write a program to generate packets with different protocol
headers, and write a checker to validate the emitted headers. The re-
configurable part is test-specific. It is a control plane configuration
of the programmable part, that allows users to change parameters
such as packets sizes, sending rates, etc.

The programmable part of a test can be divided into infrastruc-
ture that is target-independent and target-dependent. The target-
independent infrastructure is written in P4, and controls, for ex-
ample, the definition of protocol headers. The target-dependent
infrastructure is the device-specific functionality (e.g., generation of
blank packets).

Note that although PTA’s programmable parts are implemented in
P4, the data plane under test does not need to be written in P4. PTA
can be used to test data planes designed using a variety of different
workflows and languages, including high level synthesis, C/C#, and
HDLs (e.g., Verilog).

It is important to stress that all of the components of PTA are
implemented inside the target network platform. This provides PTA
with several important advantages. First, it allows PTA to test the
data plane while avoiding the surrounding hardware, including the
network interfaces. A failure of a test can guarantee that the cause is
not in the interfaces but in the tested data plane. Second, it enables
testing the device at line rate and at real time. Testing a device at
line rate is challenging due to the cost of external traffic generators
(e.g., Ixia [21]), making it outside the reach of many users. Thus,
the internal data path may have a certain speed-up over the external
interfaces, making it very hard to create and detect hazard scenarios
such as read-after-write in two consecutive clock cycles, or certain
cross-traffic scenarios that lead to consistency issues. Finally, PTA
allows users to test and debug their data plane in the field, without
additional equipment, and without changing the physical settings.
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Figure 1: The proposed architecture: target specific infrastructure (light-blue), portable suite of P4 test programs (yellow) and test-

specific configurations (purple).

4.2 Target-Independent Test Infrastructure

The target-independent infrastructure of PTA is a set of P4 programs
used for packet header generation and output checking. Both com-
ponents are implemented as a sequence of match-action tables and a
set of registers that change control flow. The entries in these tables
are re-configurable, and provide the flexibility to support different
tests.

PTA includes a set of default programs that developers may use
to generate packets with standard protocols (e.g. Ethernet, IP, TCP,
UDP, etc.) and to check for common conditions. Thus, for many test
scenarios, users need not write any P4 code themselves. To support
custom protocols and to check for data plane specific test scenarios
(e.g., to generate a packet with a Paxos protocol header [11] and
test for a specific post-condition), users can expand on these default
programs for custom-protocols using P4.

Packet Header Generator. The packet header generator takes blank
input packets, and turns them into stimulus packets injected to the
data plane under test. The P4 program defines the protocols that
need to populate the header and properties of the contents. Because
tests are written in P4, developers can use any protocol that is im-
plementable in P4, and can easily add custom headers, different
fields, change the ordering of headers, and more. For example, an
empty packet entering the test header generator will be emitted as a
standard TCP/IP packet, with a certain sequence number and valid
checksum. Combined with a blank packet generator, the test header
generator will control packet size and contents, traffic pattern (e.g.,
inter-packet gap), and may even intentionally craft illegal stimulus
packets. The output of the test header generator connects to the input
of the data plane under test.

Output Packet Checker. The output of the data plane under test is
connected to the output packet checker. The output packet checker,

implemented in P4 and shown in Figure 1, can be programmed to
expect specific values or sequences of values within the returned
packets. It compares these values against the input traffic stream
(e.g., to detect packet drop, reordering, or other points of failure).
The stages within the checker’s stages support different types of
functionality, such as matching specific header fields, or comparing
metadata bus values. The outcome of each check is stored in a
memory. Typical types of stages include an ALU, that performs both
logic and arithmetic operations over headers and metadata, and CAM
and TCAM blocks that compute simple matches against header and
metadata fields. The number of received packets is an example of a
common functionality implemented using counters.

4.3 Target-Dependent Test Infrastructure

P4-based data planes are packet driven, and do not generate pack-
ets without a stimulus. For this reason, PTA uses a blank packet
generator that creates empty packets, feeding the test packet gen-
erator’s P4 pipeline. By a blank packet, we mean a packet with no
header fields and no payload. The blank packet generator is target
specific. For example, some ASIC switches (e.g., Tofino) already
have a built in-packet generator, while other devices (e.g., FPGA)
require a dedicated implementation. Even if a packet generator al-
ready exists within the device, it varies in features and properties
between devices, and is therefore target specific.

Additional target specific infrastructure is focused on the connec-
tivity of PTA: connecting the output of the test packet generator to
the data plane under test, and connecting the output of the data plane
under test to the output packet checker. This connectivity depends on
the hardware architecture of the device, where PTA is internal to the
device. For example, NetFPGA has a 256-bit wide AXI-4 streaming



bus, and the output of the test packet generator is connected to NetF-
PGA’s input arbiter. On other devices, the bus type and width will
vary, as well as the connection points.

Finally, PTA includes 4 additional functions implemented in hard-
ware that are useful for testing: random number generation, counters,
time-stamping, and a method to swap fields. These are used as ex-
terns in the P4 programs.

4.4 Re-Configuration

To fully explore the parameter space for a test, PTA allows users to
re-configure tests. To re-configure a test, a user writes a simple test
script. The script allows users to change features such as the packet
rate burst length, the gap length between packet transmissions, the
packet sizes, the payload sizes, etc. It also allows users to set initial
meta data flags and fields.

All configurations updates are control plane changes that happen
dynamically at runtime. This allows users of PTA to explore a wide
variety of test scenarios without having to recompile the test pro-
grams and install a new image—which can take a long time for some
targets.

4.5 Interactions with the Control Plane

PTA monitors the data plane, and can identify and verify packets
going to the control plane. It does not have direct visibility into the
control plane. However, the functionality of a networked-program
is a combination of the data plane program and the control plane
configuration. During tests, PTA treats both as a single unit. A cor-
rectly programmed data plane with a misconfigured control plane
may lead to a test failure, for example if a missing entry in a table
leads to packet drop. In this context, PTA can indicate why a test has
failed (e.g., a packet was dropped), but not what was the source of
the failure (i.e., data or control plane). As we describe in Section 8.2
(test#05), PTA successfully detects control plane related bugs. An-
other advantage of PTA’s approach is that it further enables testing
different control plane configurations.

4.6 Management and User-Interface

While P4 programs define the type of packets that can be generated
by PTA, the management software defines the properties of the test. It
is responsible for configuring the control and data planes, triggering
tests, collecting and processing results, and declaring Pass/Fail. For
this purpose, PTA includes a set of Python libraries to help manage
the tests.

Test packet generation is determined by configuring the blank
packet generator. This includes both information about the generated
packet stream (e.g., number of packets, packet size, burst properties)
as well as the input metadata accompanying the packet (e.g., path
through the generation data plane, which headers to add).

Test results are specified using assertions. The management soft-
ware reads from the output packet generator the results of the test
(e.g. number of packets received), and compares them to the ex-
pected values set as Pass criteria.

An example test appears in Appendix A.
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4.7 Test Generation

The definition of validation tests is always a challenging task, which
we address in Section 9. In this section, we focus on the generation
of pre-defined tests.

First, PTA reuses verification tests as validation tests through
an automated integration with P4v, as discussed in Section 5. This
means that tests previous written and executed for P4v are compiled
and run on the hardware target using PTA.

Aspects that can not be tested using verification tools, such as
P4v, must be written by the user. The user has a high degree of
freedom in test generation. PTA includes a test library that allows
users to specify test pre-conditions and post-conditions in a Python
scripts. These are automatically translated to a configuration of PTA.
An example test script is presented in Appendix A. A lot of these
tests, though not all, can be defined once and then be reused as data
plane programs change or for regression tests (as is the case with the
NetFPGA).

PTA supports some types of fuzz testing, such as random payload
or random header contents, and these were used in a few functional
tests described in Section 8.2.

The open-source nature of PTA means that users can also change
the hardware infrastructure to support new or different tests that
were not considered by the authors of this paper.

S INTEGRATION WITH A VERIFIER

There has been significant prior work on workload and test case
generation. This work covers a broad range of techniques, including
automatic test packet generation [31], fuzz testing [3], and software
validation [26]. PTA provides a path for these tools to run the tests
that they generate on hardware. As a proof-of-concept about how
such tools could integrate with PTA, we developed a prototype P4v-
to-PTA translator.

Many software verification tools, including P4v [26] and Assert-
P4 [16], are based on Hoare logic, which provides a formal system
for reasoning about the correctness of computer programs. The cen-
tral feature of Hoare logic is the Hoare triple. A Hoare Triple is of the
form {P} ¢ {Q}, where P is the precondition, Q is the postcondition,
and c is the command, i.e., a piece of code that changes the state of
the computation. A verifier can translate these assumptions and as-
sertions into logical formulas, and use an automated theorem-prover
to check if there is an initial state that leads to a violation.

The P4v-to-PTA translator parses an annotated P4 program and
automatically extracts the assumptions (i.e., the Ps) and assertions
(i.e., the Qs). For each assumption, the tool collects a list of test
headers to be generated and identifies suitable values for each field.
It then generates the P4 code and configuration for the test packet
generator. For each assertion, the tool generates the output packet
checker’s data plane and the accompanying configuration, as illus-
trated in Figure 2.

This process is fully automated. To test an annotated P4 program,
a user simply needs to place the P4 code in a specified folder. The
PTA tool not only generates the test generator and checker P4 pro-
grams for PTA along with the associated configuration, but also
compiles and runs the user’s application on Tofino. Furthermore, the
management scripts collect test results and present them to the user.
The entire process is similar to the using the P4v command line tool,
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Data Plane Under Test Test Header Generator

// omitting parser code // omitting parser code
action ai() {
subtract_from_field(h.s2, h.s3); }
table t1 { actions { a1; } }

action set_hdr() {
add_header(h);
modify_field(h.s2, 4);
modify_field(h.s3, 3); }
control ingress { table tbl_hdr { actions { set_hdr; } }
@pragma assume(
h.s2==48&&h.s2>hs3) ~ |
apply(t1);

@pragma assert(h.s2 <= 4) }

// omitting ingress code

Output Packet Checker

// omitting parser code

action all_subs() {

el subtract_from_field(h.s2, 4); }

table sub_tbl { actions { all_subs; } }

register check_reg_1 {
blackbox stateful_alu check_alu_1 {
reg: check_reg_1;
condition_lo: h.s2 <= 0;
_ﬁ update_lo_1_value: register_lo + 1; }
action check_act_1() {
check_alu_1.execute_stateful_alu(INDEX); }
table check_tbl_1 { actions {check_act_1;} }

control ingress { apply(sub_tbl); apply(check_tbl_1); }

Figure 2: Integration with P4v.

but runs real, extensive hardware validation. Appendix B describes
an example P4v-to-PTA test.

Using PTA as a runtime tester, we were able to identify two
bugs in the Barefoot Networks SDE compiler, related to saturating
integers (Section 8.1). These bugs would not be caught by formal ver-
ification. The programs that suffered from these bugs were logically
correct, but still exhibited unexpected behavior.

6 IMPLEMENTATION

We have implemented PTA on two target devices: NetFPGA SUME
platform and Barefoot Networks’ Tofino ASIC. The code base,
which includes both the implementations, is open source, and avail-
able on GitHub [36].

FPGA Implementation. An FPGA-based prototype is implemented
on the NetFPGA SUME platform [50] using the P4—NetFPGA
workflow [19]. It uses Xilinx’s SDNet[47] 2018.2 and supports
P4_16.

PTA builds upon the NetFPGA SUME reference architecture,
which is composed of a data plane that processes traffic arriving
from four independent network interfaces and a host (over PCle).
PTA taps to the architecture through a sixth input interface and a
sixth output interface. Our implementation of PTA on NetFPGA
follows the design outlined in Section 4. We provide a detailed
description of our FPGA implementation in Appendix C.

ASIC Implementation. We also implemented PTA on Barefoot Net-
works’ Tofino, a 6.5Tbps programmable Ethernet switch ASIC [5].
The Tofino ASIC provides either two or four hardware packet pro-
cessing pipelines, depending on the ASIC model. The four pipelines
of Tofino allow us to implement PTA using an architecture simi-
lar to the FPGA architecture: the packet generator and checker are

implemented within separate pipelines, and the data plane under
test is loaded in a dedicated pipeline. We note that the current Bare-
foot Networks SDE control plane software does not allow users to
manage different programs loaded on to different data planes. This
limitation is not inherent, and we expect the functionality will be
supported in future releases. However, as a temporary work-around,
we performed our debug experiments using three switches instead
of one. Our implementation of PTA on Tofino is based on P4_14, as
P4v supports only this version of the language, and as Barefoot’s
development tools supported P4_14 more extensively at time of
development.

7 EVALUATION

Validation. We validate PTA independently from any data plane
under test, both on Tofino and on NetFPGA. The validation uses
external traffic generation (e.g., OSNT [4]) and capture tools (e.g.,
Endace DAG) to confirm assumptions such as traffic rate and con-
tents. Barefoot further confirmed to us that the packet generator
built inside the Tofino chip runs at line-rate. We conduct a func-
tional validation of PTA, testing using both external and internal
tools (counters, logic analyzer) to examine each feature. Testing of
programmable data planes began only once the PTA infrastructure
was tested.

Performance. We have evaluated and confirmed that both NetFPGA
SUME and Tofino-based programs run at line rate, using the setup
previously described and ranging packet sizes from 64B to 1514B
on NetFPGA!. PTA implementation on NetFPGA does not allow
for congestion propagation into PTA’s pipelines, meaning that any
flow control indication leads to packet drop outside the modules. For
both NetFPGA and Tofino, support for congestion control within the
pipeline is the same as for any other programmable dataplane [47].
We showed these properties of PTA in Section 8.4, by testing net-
worked programs for line-rate and identifying bugs.

Resource Consumption. PTA introduces two new modules to a
device. On the generator side, NetFPGA programs required between
2 and 4 pipeline stages, using one table and 1-2 externs, and Tofino
implementations required 2 tables. On the checker size, NetFPGA
programs required between 5 and 7 pipeline stages, using two tables
and 3-5 externs. On Tofino, 7 tables and 5 stateful ALUs were
required in the checker. A breakdown of these results is provided
in [36].

We report the resources overhead introduced by PTA, but caution
that it is difficult to quantify resources in a meaningful way, since
the amount used depends on the program under test and the compiler.
For example, on NetFPGA the compiler requires that all tables have
least 64 entries, even if 16 entries would be sufficient. A newer
version of SDNet (2019.1), not currently supported by NetFPGA, is
more resource efficient.

On NetFPGA, representing an FPGA-based use case, the resource
overhead of PTA (i.e, average of logic and memory use) never ex-
ceeded 15%, which was for the experiments with NDP [18], com-
piled with SDNet 2018.2. In many cases (e.g., INT, Learning Switch)
this number drops to 9%. The blank packet generator required just

IDetails of Tofino evaluation are under NDA.



Metric Device Property Example
Max # of headers in a single test PHYV size 4Kb
Max # of checks in a single test # of Stateful ALUs 40
Max # of packets in a single test Counter width 4 billion
Max test speed Pipeline Bandwidth 1.6 Tbps
Max packet size Max Transmission Unit 1514 B

Table 3: Additional Evaluation Metrics. Example values are in-
dicative of the proof-of-concept implementations.

0.13% logic overhead, and no memory. Detailed resource consump-
tion is provided in [36].

On Tofino, PTA tested a data-plane program on one pipeline using
other pipelines. Since resources are not shared between pipelines,
PTA does not “take away” resources from the data plane under test.
ASIC resources are given, and PTA easily fits, using the resources
noted above.

Test Completion Time. The PTA run time includes four compo-
nents: platform setup (i.e., downloading an FPGA bit file), config-
uration, test execution time, and results collection and report. The
test execution time is test-dependent, i.e., it depends on how long
a user wants to send traffic, the number of parameters to explore,
etc. For the tests that we ran on NetFPGA, the average overall time
was ~110s, including all four components, though for some tests
this number was reduced to ~70s. Out of that, the platform setup
time, which is a one time process, is ~20s, and test re-configuration,
including populating tables, is in the order of seconds. An exhaustive
performance test on NetFPGA SUME, which tests throughput under
each and every supported packet size, with a billion packets per
packet size, was ~3000s.

Additional Metrics. Many of PTA’s performance metrics, summa-
rized in Table 3, are a property of the hardware target, not PTA.
For example, the number of headers depends on the size of the
packet header vector (PHV), and the number of verified aspects in a
test (e.g., dropped packets, correct headers checks) depends on the
number of stateful ALUs in the device.

8 BUGS FOUND

Our implementations of PTA enabled us to uncover bugs within
different programs and architectures, while covering use cases dis-
cussed in Section 2. Table 4 provides a partial list of tests run and
bugs found using PTA. The table indicates the name of the program
we used for the data plane under test, a brief description of the cat-
egory of bug, the hardware platform, and whether or not the test
passed. Note that when the program name is Any, it indicates that the
bug was not tied to a particular program. We discuss these particular
bugs as they highlight the diversity of test cases that PTA enables.

8.1 Compiler Checks

PTA was able to find or confirm three bugs in version 8.9.1 of the
Barefoot SDE compiler. These bugs were found when integrating
with P4v, discussed in Section 5. In the first bug, (test #01), the
compiler generated incorrect byte swapping code (e.g., between big
and little endian). This bug has been fixed in the 9.0.0 release of the
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SDE. The second bug is related to “saturating” an attribute in header
fields (test #02); header fields marked as “saturating” always collapse
to their minimum value after a “subtract” operation is computed
on them. The third bug prevents the implemented data plane from
correctly processing “signed” header fields (test #03). Although
represented in two’s complement form, “signed” fields are treated as
unsigned numbers in the hardware, thus generating incorrect results.
We reported these bugs to the developer, and they have since been
fixed.

8.2 Functional Tests

We discovered several functional bugs in multiple designs imple-
mented on NetFPGA SUME, including the Verilog and P4 Learning
Switch designs, and NDP [18]. First, packets with invalid source
MAC addresses pass through the data plane and reach the output
network interfaces, even though they should have been dropped
before traversing the pipeline (test #04). This bug differs from the
Parse Reject bug (test #08), as the value within the header should
be banned, not the header itself. Furthermore, the issue is Ethernet
compatibility, not compatibility with the P4 specification. Second,
we find that, when the number of entries written to the MAC lookup
table exceeds the size of the table, the write pointer will wrap around,
and the first entry will be over-written (test #05).

When testing a P4 implementation of In-band Network Telemetry
(INT) [20] on the NetFPGA platform, we detect some missing func-
tionality (test #06). This includes missing measurement of switch
hop latency, egress port utilization, or queue congestion status. The
design also does not report which rules matched while traversing the
data plane or provides information about other flows traversing the
same network queues.

A more serious bug in the implementation of INT is the han-
dling of packets with a large instructions count (test #07). The INT
specification [20] states that “a device would cease processing an
INT packet with an Instruction Count higher than the number of
instructions that it is able to support”. In our test, we find that if
more than five instructions are requested, the program fails to set the
Bottom-of Stack (BOS) flag to the last (fifth) INT header.

8.3 Under-Specification Tests

Because different hardware targets have different capabilities and
features, they may exhibit different behavior. And, in some cases, it
would be unreasonable to force all targets to have a uniform behavior,
because doing so would add unnecessary complexity to a design,
or add additional performance overhead. For such situations, the
language specification often leaves the implementation details as up
to the compiler.

One example of such behavior is illustrated in the snippet of code
in Figure 3, which shows the implementation of a parser in P4 (test
#08). It includes logic to extract the Ethernet header and examine the
type field of the Ethernet header. If the type field indicates IPv4, the
parser will transition to the parser state for extracting IPv4 headers.
Otherwise, the program will drop the packet (i.e., re ject).

The intention of this program is that any non-IPv4 packets should
be dropped. However, the behavior of the program when compiled
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// Parse packet headers by specifying state
// machine transitions.
parser Parser (packet_in b,
out Parsed_packet p,
inout sume_metadata_t sume_metadata) {

state start {
b.extract (p.ethernet);
transition select (p.ethernet.etherType) {
IPV4_TYPE: parse_ipv4;
default: reject;
}
} // Eliding IPv4 parser
}

Figure 3: Subset of a P4 program that reject non-IPv4 packets.
The behavior of the bold line is unspecified.

using P4—NetFPGA [19] might run counter to user expectations—
the packet is forwarded through the programmable pipeline and out
of the device.

The reason is because the P4 language spec leaves the choice of
how to implement a parser reject state up to the architecture. The
SDNet compiler [47] does not implement the reject state as drop and
P4—NetFPGA [19] does not use the reject indicator provided by the
Simple SUME Switch architecture used by SDNet.

Technically, forwarding the rejected packet is not a bug, since the
implementation is not contrary to the specification. However, it does
result in unintuitive behavior that might surprise a developer. And,
this behavior would not necessarily be caught by verification tools
like P4v [26] or Vera [42], depending on how they model re ject.

8.4 Performance Tests

We evaluate the performance of several P4 and HDL based pro-
grammable designs built upon the NetFPGA infrastructure. We first
discuss bugs that are specific to a given program. We then discuss
bugs that are a property of the NetFPGA infrastructure.

In the NetFPGA Reference Switch design, we discover that the
lookup table is not able to sustain subsequent entry updates with
packet sizes of less than 385B, due to the write access latency (test
#09). When the packet size is 385B or bigger, meaning 13 clock cy-
cles or more between two updates, the design functions as expected.

Running a similar test on the P4-based learning switch resulted in
a failure to support consecutive table updates at line rate, regardless
of packet size. The root cause to this limitation is the separation of
control and data planes, which means that updates to the lookup
table must go through the host by design.

An evaluation of the P4-based INT design on NetFPGA yielded
interesting performance results (test #10). We find that the data
plane can sustain the full internal throughput (S0Gbps) only with
unaligned packet sizes (e.g., 65B, 97B), but not for data path aligned
packet sizes (e.g., 64B, 96B). We expect that this issue is caused
by the expansion of the packet within the encrypted data plane
module, beyond the INT header added to the packet. This is also the
explanation proposed to us by the P4—NetFPGA designers.

8.5 Architecture Tests

A few of the bugs uncovered by PTA had to do with the architecture
of specific designs or with the underlying hardware infrastructure

(test #11). For example, initial throughput testing of both HDL-based
and P4-based learning switches resulted in a large number of packet
drops. The cause was found in the arbiter at the input to the data
plane, that turned out not to be work conserving. An additional
architecture limitation was discovered at the output of the data plane,
at the output queues. Full rate traffic through the data plane under
test led to packet drops at the queues, which turned out to be an
intentional design choice by the NetFPGA team. They designed the
overall supported outputs queues throughput to be circa 40Gbps. We
note that PTA found this bug after the platform had already been
in use for more than 10 years. The fix has supported 2 more recent
NetFPGA-based projects.

8.6 Security Checks

In the course of working on this paper, we have conducted several
experiments, both on P4A—NetFPGA and on Tofino, trying to un-
cover security vulnerabilities. In our exploration, we focused on one
aspect of the P4 language, which is Undefined Behaviors (Section
G.2 of P4 Specification v1.1.0 [32]). This includes aspects such as
uninitialized variables, accessing header fields of invalid headers,
and accessing header stacks with an out of bounds index.

First, we tried to identify the networking-equivalent of a “Melt-
down” [28] bug by attempting to infer the contents of previous
packets using malformed packets (test #12). In principle, we try to
infer the contents of the memory by reading a value of a non-existing
header in the packet, in an attempt to use previously stored header
contents. This is one form of accessing header fields of invalid head-
ers. Positively, we find that the SDNet compiler returns a zero value
for such attempts, providing stateless operation between packets.

In another test, we attempted to read headers beyond the end
of the packet, with a similar motivation (test #13). In this case the
result was positive as well, with the Tofino switch dropping the
“aggressor’” packet. SDNet does not allow such operations either,
invalidating all parsed bits of the offending packet. This case is
interesting, as it touches on the delicate interface between compiler
and architecture. Although SDNet guards against such operations,
P4—NetFPGA did not handle the error indication from SDNet.
Therefore, the unprocessed and partially corrupted packet may still
be emitted.

8.7 Comparing Designs

By comparing seemingly identical designs, we do not identify bugs,
as these are covered by previous scenarios. However, we do identify
gaps in specification, behavior, or performance. For example, we
compare two implementations of a learning switch: one written
in Verilog, and one written in P4. Both designs share the same
NetFPGA infrastructure, and differ only in the data plane module.
Despite the similarity, we find two differences in functionality. First
(test #14), in the P4-based design, two ports cannot be assigned
to the same MAC; once a Port-MAC binding has been learned, it
cannot be overwritten by other packets. In contrast, in the Verilog-
based design, after a Port-MAC binding has been learned, it can be
overwritten by other packets. Second (test #15), in the Verilog-based
design, overflow happens when exceeding the table size and the
first entry is overwritten without any notice (as noted before). In
the P4-based design, on the other hand, no overflow happens when
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Test# Program Category Description HW Plat. Pass/Fail
01  Any Compiler Byte swapping Tofino Fail
02  Any Compiler Saturating Tofino Fail
03 Any Compiler Signed fields Tofino Fail
04 NDP, Switch (P4, Verilog) Functional Invalid MAC NetFPGA Fail
05 NDP, Switch (P4, Verilog) Functional Table wrap NetFPGA Fail
06 INT Functional INT features NetFPGA Fail
07 INT Functional Instructions count NetFPGA Fail
08 INT Underspecification Parser reject NetFPGA Fail
09  NDP, Switch (P4, Verilog) Performance Write latency NetFPGA Fail
10 INT Performance Aligned packet sizes NetFPGA Fail
11 Any Architecture Input arbiter NetFPGA Fail
12 Any Security Meltdown NetFPGA/Tofino  Pass/Pass
13 Any Security Read headers beyond NetFPGA/Tofino  Fail/Pass
14 Switch (P4) Designs Port MAC NetFPGA Fail
15 Switch (Verilog) Designs Table wrap NetFPGA Fail

Table 4: A subset of the tests we ran and bugs found using PTA.

exceeding the table size. In principle, such updates are expected to
be silently dropped by the control plane. This is a property of the
closed-source compiler, which we don’t have visibility to test.

8.8 Ethics and Corrective Actions

Ethical issues have been considered as part of this research. We have
focused on the handling of vulnerabilities and weaknesses discov-
ered in the different designs. Vulnerabilities have been disclosed and
discussed with code and platform originators, which also helped us
clarify what is considered a bug, a known design limitation, or an
unsupported feature. We have further taken a positive approach and
contributed code fixes to open-source projects (e.g., NetFPGA), as a
means to improve their quality based on our findings.

The reject limitation found in P4A—NetFPGA was reported to the
NetFPGA project and Xilinx Labs. Xilinx Labs have proposed a
work-around that enables users to support functionality similar to
reject in the pipeline, even though actions as a result of reject is not
implemented in the compiler.

We discussed the architecture and performance issues in the NetF-
PGA Reference designs with the NetFPGA team. The NetFPGA
team indicated to us that they were aware of a minimum-access
latency limitation for table updates, but not to the discovered extent.
The authors of this paper have also contributed a fix to the NetF-
PGA input arbiter module as part of this work, as well as the packet
generation module of PTA.

Bugs in the Barefoot Networks SDE were reported by entering
a ticket on the FASTER portal and via personal email communica-
tion. All bugs reported in this paper have since been fixed by the
developers.

9 LESSONS LEARNED

In this section, we summarize our some lessons learned through our
experiences with testing network data planes.

9.1 P4 as a Language for Writing Tests

PTA allows users to write tests in the P4 language. It is natural to
question if this is a good choice. After all, P4, by design, trades-off
expressiveness for performance.

One reason for using P4 is opportunistic. There are P4 compilers
targeting ASICs [6], NPUs [30], FPGAs [46, 47], GPUs [25], and
CPUs [24, 33, 38]. Therefore, tests written in P4 should be portable
to a wide variety of devices.

On the other hand, P4 is not completely target-independent. For
PTA, we needed target-specific implementations of packet-generator
code. Overall, though, we found that the target-specific code could
be modularized, and that having a portable test written in a common
language was attractive.

A second reason for using P4 is that we found that the match-
action abstractions offered by the language were well-suited to writ-
ing test code. Of course, such a statement is a matter of taste. But,
our experiences were that creating tests in P4 was relatively simple,
and that they provided a nice high-level abstraction over hardware.

However, we are also using P4 for a task for which it was not
intended. And, as a result, there are some language extensions which
could be added to P4 to make it more amenable for use with testing.
An obvious first step is to extend P4 with language features that
allow users to generate specific types of packets. In other words, to
provide a programmatic interface for packet generation.

PTA is designed to provide a programmable test framework with
an internal view of a network device. However, this internal view is
hampered by the closed-source nature of hardware solutions, e.g.,
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modules generated by SDNet are encrypted. Testing would be im-
proved if users could set hooks within the code or access the state
or values of certain language constructs. A hook “breaks” the data
plane structure, since it allows users to inspect status at a certain
point within the design. Such extensions to the P4 language would
allow testing in case of a failure, or when the pipeline is stuck.
Supporting watch-points and stepping through code are required
future contributions in the field of programmable network devices.
Some of the bugs introduced in this work, such as the performance
limitation identified in the INT design, can not be easily tracked and
tested today even by compiler vendors, with full access to the code.

9.2 Under-Specification as a Source of Bugs

Because enforcing a uniform behavior on all hardware targets is
impractical, some functionality is compiler specific (e.g., uninitial-
ized values). Under-specification in the language may lead to bugs
(Section 8) or security vulnerabilities [14].

Another form of under-specification, i.e., in the interface and
division of responsibilities between the data plane and the rest of the
device, can also cause errors. Integration bugs are not uncommon
in hardware design, but the problem is exacerbated where different
technologies interface. This ranges from the integration of a pro-
grammable pipeline within an otherwise fixed-function switch, as
well as with the integration of externs within P4 programs.

Attending to under-specification requires a closer hardware/soft-
ware co-design. This is a shift from the common paradigm focusing
on the end-host (e.g., operating system and NIC) to a more holistic
view that also includes network switches. While such an integrated
design is likely to reduce bugs, the disadvantage is that portability
may be restricted.

9.3 Writing a Test Suite

One of the challenges in testing a network device is creating a
comprehensive corpus of tests. Considering the bugs detected by
PTA, we identify three classes of tests.

The first class of tests is the “expected” list of tests. This includes
tests that were run during the design stage, and need to be validated
on a newly produced target, e.g., tests written for P4v and later
translated by PTA. It also includes traditional network tests, such as
those using external test equipment, e.g., checking throughput under
different scenarios (test #10).

A second class of tests is tests generated in a response to a bug
discovered by a user, e.g., the byte swapping bug (test #01). The
goal of such a test would be to (i) validate that the bug is fixed in
a newer version of the program. (ii) be used as part of regression
tests in future releases (iii) test deployment of bug fixes in the field.
The last use case is a good example of the usefulness of PTA, as it
enables testing devices in the field without physically connecting
them to test equipment.

The third class of tests targets known potential points of failure
that are typically hard to test. An example is testing saturation (test
#02), which one would typically verify in a block-level simulation,
but would be hard to trigger as part of traditional hardware validation
without additional built in self text (BIST) resources. PTA enables
users to craft such tests without per-test resource overhead and while
specifically targeting sensitive elements in the design.

As tests are target independent in PTA, we envision building such
an open-source corpus of tests for community benefit, starting with
the tests included in the PTA repository [36].

9.4 Coverage and Test Case Generation

One of the advantages of network tests is that they can be run at
line rate. On ASIC, that means exhaustive testing is feasible, since
billions of packets with billions of header values can be tested every
second. On the NetFPGA SUME platform, the supported packet
rate is about sixty million packets per second. While these numbers
are high, they are insufficient to fully cover all potential cases. For
example, to test all combinations of 48bit source Ethernet MAC
header, it would take about eight hours on a switch capable of
processing ten billion packets per second. Testing the combination of
both source and destination MAC header would take x28 longer. As
switches often need to drop packets where the source and destination
address are the same, or some forbidden MAC addresses, this is
not a crazy scenario. Note that with PTA, users can write such
exhaustive tests, or write tests using random field values (e.g., source
and destination MAC address), as well as specific scenarios (identical
source and destination MAC addresses). The advantage of PTA
is that there is no need to write new P4 code for these different
scenarios. One can simply re-configure the test via register access.

10 LIMITATIONS OF PTA

Implementation. Our two implementations present different facets
of PTA. The implementation on NetFPGA uses P4_16, demonstrates
full integration with a device’s data plane, enables in-field testing
(e.g., for smartNIC applications), but lacks the performance and re-
alism of commercial ASICs. The implementation on Tofino demon-
strates the feasibility of using PTA to detect bugs on commercial
ASICs, and supports full line rate, but does not support in-device
integration (as the ASIC’s architecture is fixed), nor in-field testing.
As we show in Section 7, it does allow detecting data plane bugs.

Test Generation. With PTA, users must still define tests themselves.
PTA also helps map logical tests to physical hardware tests, as in the
case of P4v-to-PTA. The problem of defining tests is a long standing
research problem [3, 26, 39] which is beyond the scope of this work.

Bugs in PTA. Despite best efforts, there is no guarantee that PTA
is bug free. To reduce the likelihood of bugs, we separated PTA’s
infrastructure from users’ data plane and architecture, and validated
it independently using external tools (Section 7). We note that a bug
in a user program will not affect PTA’s operation. Similarly, a bug
in PTA will not affect a user program. In this case, PTA’s result may
be incorrect.

Portability. Porting PTA between targets is not effortless. Different
targets require changes to the hardware infrastructure, and require
validating again PTA’s infrastructure (e.g., traffic generation perfor-
mance and correctness). It may also require changes to the control
plane, as different targets use different interfaces.

11 RELATED WORK

PTA is related to programmable network programming languages,
network testing, and data plane verification.



Network Programming Languages. Developers specify the packet-
processing behavior of re-configurable ASICs using a variety of
domain specific programming languages. Notable examples include
Huawei’s POF [40], Xilinx Labs’ PX [8], Broadcom’s NPL [2], and
the P4 Consortium’s P4 [6]. PTA is implemented in P4, but there is
nothing that inherently depends on P4. It could be ported to any of
the above languages.

Network Testing. There has been significant prior work in both
industry and academia on testing fixed-function switches. The most
similar to PTA is the service activation test (SAT) [15]. SAT, used by
carrier Ethernet service providers, is intended to ensure that network
services are configured as specified and meet the predefined Service
Acceptance Criteria (SAC). SAT uses packet injection as a means
to test the service, but it is closely defined and not programmable,
covering only a limited set of the aspects enabled by PTA. More
low-level approaches, such as ATPG [13], focus on manufacturing
faults rather than bugs. FPGA debug tools, such as ILA [43], enable
limited functionality testing, far less than the tests described in this
paper, and are timing-affecting.

Network Testing Using P4. In-band network telemetry (INT) [20]
and postcards [17] use programmable network hardware for moni-
toring and network-level diagnostics. In contrast, PTA focuses on
detecting bugs on a device, in a compiler, or in the logic of a data
plane program. Moreover, PTA is active, rather than passive, mean-
ing that it will generate specific packets to facilitate ad-hoc and
exploratory analysis.

Data Plane Verification. There are several recent projects on P4
program verification, including Vera [42], P4v [26], and Assert-
P4 [16]. The details of the approaches differ, but essentially, all of
these systems translate P4 programs and some control plane state
into a logical formula, and use techniques such as symbolic execu-
tion [9] to check that correctness properties are not violated (e.g.,
a header field in a packet is not accessed if it has not been parsed).
PTA complements these efforts by providing runtime testing. PTA
provides grey box testing, as often only partial information exists on
the data plane under test. Grey box testing has been further motivated
by prior works on router and network level, such as NetSonar [48].

12 CONCLUSION

We have presented PTA, a portable test architecture for testing data
planes. PTA leverages both the P4 language and hardware design to
provide flexibility and visibility into programmable network devices.
We have built a prototype of PTA, and used it to detect numerous
hard-to-find bugs. PTA addresses an urgent need for improved tools
and techniques for data plane testing and verification.
Acknowledgments. We thank the NetFPGA core development team
who helped us develop and debug PTA. We thank the anonymous
shepherd and reviewers, who helped us improve this paper. We ac-
knowledge the support from the Swiss National Science Foundation
(SNF) (project 407540_167173).
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A EXAMPLE PTA TEST

To further illustrate the use of PTA, this section provides an in depth
description of how a user would use the framework to detect the bug
described in Section 1 (test #11 in Table 4).

The bug reveals itself when the traffic rate exceeds a threshold.
So, to check for this bug, a user of PTA will write a test that injects
traffic at increasing rates until either the data plane reaches peak
performance (i.e., PASS) or packet drops are detected (i.e., FAIL).
‘We note that this is an internal test, so traffic injection is independent
of the external interfaces.

To perform the test, the user of PTA only needs to write a short
Python script, using a set of libraries provided by our framework. The
PTA libraries include a Python module, named test_mod, which
provides functions for interfacing with the underlying hardware
platform, and a set of Bash shell scripts, which are called by the
library modules and execute register access to the device.

The user-supplied Python script appears in Figure 4. The main
logic of the test is repeated for increasing traffic rates (line 7). Each
iteration first initializes the counters (line 9) and registers (line 10).
Then, it sends a fixed number (i.e., 1000000000, line 4) of packets
of a certain size (i.e., 128B, line 5) at a given rate (i.e, rate, line 7).
Finally, the test checks that the number of packets received is equal
to the number sent (lines 13-17).

For this particular bug, the assertion in line 14 is the important
one. It states that the number of packets exiting the Input Arbiter
module (see Appendix C) must be equal to the number of generated
packets. In other words, it checks if any packet drops occur in the
Input Arbiter module. Similarly, the assertions at line 15 and 16
check that the Output Queues module is functioning correctly.

The example test script is included in PTA’s open-source code
repository [36].

import test_mod

rate_list = [ ..., 10, 50 ]
"1000000000"

nypgn

5, 20, 30, 40,
num =

size =

for rate in rate_list:
test_mod.
test_mod.
test_mod.

load_image ()
init_counters ()
init_registers()
test_mod.generate_packets (num,
test_mod.collect_results ()
assertions_list = [
("input_arbiter_packets_out",
("output_queues_packets_in",
("output_queues_packets_out",
]

test_mod.chk_assertions (results,assertions_list)

size, rate)

"EQ", num),
"EQ",

"EQ",

num) ,
num)

Figure 4: Example test script.

B EXAMPLE P4V-TO-PTA TEST

The P4v-to-PTA integration tool, targeting the Barefoot Tofino ASIC,
automatically generates a complete test configuration from P4 source
code annotated with P4v assumptions and assertions [26]. In this
section, we disuss the example shown in Section 5, Figure 2 in detail.
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We first describe the data plane under test, colored green in Fig-
ure 2. There is a table, t 1, that performs an action, al. The action
subtracts the value in one header field, h . s 3, from another, h.s2.
The resulting value is stored in h.s2. The ingress control block
simply applies table t 1.

We assume that a user has annotated this program with assump-
tions and assertions, highlighted in blue text. In the example, the
user specifies an assumption that states that field s2 must have an
initial value of 4 and that field s 3 must have an initial value which
is less than the one of s2. The assertion specifies that the result of
the subtract operation, stored in s2, is expected to be less than or
equal to the initial value of 4.

With this annotated source code as input, the P4v-to-PTA tool
automatically generates the entire test configuration. The generated
test initializes the hardware, generates the test packets, collects raw
results, and reports the results to the user. In Figure 2, we highlight
the test header generator and the output packet checker, which are
colored yellow.

The test header generator must inject packets that match the P4v
assumption, namely that the packets have a header h with fields s2
and s3 set to values 4 and 3, respectively. We note that in some
cases, as in this one, the assumption allows our tool to select a
range of values. We currently use basic heuristics (i.e., the closed
value to the maximum in a range) to select a concrete value. As
discussed in Section 4.2, the packet header generator module is
target-independent, and programmed in P4. The code block in the
top of Figure 2, shows the generated P4 code.

The output packet checker must test the P4v assertions, i.e., that
h.s2 <= 4. Again, the packet checker code is programmed using
P4, as shown in the yellow code block in the bottom of Figure 2. The
code includes two actions: all_subs ( ) and check_act_1 (
) . Since the stateful ALUs in the Tofino switch can only compare
the value of a header field with zero, the tool splits the compar-
ison in the assertion in two pieces: a subtraction and a compari-
son with zero. The first action subtracts from s2 its initial value
(subtract_from_field(h.s2, 4)).The second action im-
plements the comparison through a stateful ALU (condition_lo:
h.s2 <= 0). The outcome of the comparison is stored into a
register, that can be read through the control plane of the switch
(update_lo_1_value:
in the register is incremented if the comparison is true.

C NETFPGA SUME IMPLEMENTATION

Figure 5 illustrates our open source, FPGA-based, prototype imple-
mentation, which builds upon NetFPGA SUME’s reference archi-
tecture. NetFPGA's reference architecture is composed of a data
plane that processes traffic arriving from four independent network
interfaces and a host (over PCle). Incoming data from the different
interfaces is admitted to the data plane through an input arbiter. PTA
taps to the architecture through a dedicated input interface and a
hardware module, called “packet mirror”, that provides a copy of
the traffic processed by the data plane under test.

The test packet generator module is composed of two sub-modules.
First, because a P4 pipeline is not capable of generating packets
without a stimulus, a blank packet generator module generates blank
packets, i.e., packets with no header fields and no payload. Next, a

register_lo + 1).The value stored
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Figure 5: NetFPGA SUME implementation.

test header generator module, which is P4-programmable, modifies
the blank packet to add the appropriate headers and data for the test
case. Finally, the packets are injected into the data plane under test.

At the output of the data plane under test, traffic is transparently
mirrored; one copy is forwarded to the output queues and interfaces
of the card, while the other enters the output packet checker module.
The checker module checks packet header fields, based on the P4
specification provided by the user, and updates stateful elements,
e.g., packet and byte counters. Finally, test results are sent to the
host computer over the PCle interface.

PTA’s tables are configured using NetFPGA’s control plane in-
frastructure, i.e. using NetFPGA'’s table load and register access
primitives, configured over PCle. However, PTA does not share the
control plane program with the data plane under test. All control
plane accesses are done either before or after the configuration of
the test subject have taken place, and not during test run time. In this
manner, PTA prevents contention on PCle or the control plane.
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