
INTRODUCTION TO THE
MATLAB APPLICATION

DESIGNER

EXERCISES

Eric Peasley, Department of Engineering Science, University of Oxford
version 4.6, 2018

MATLAB Application Exercises
In these exercises you will be building your own MATLAB App using the MATLAB App
Designer.

Before starting any design, it is a good idea to make a rough sketch of the what you want
the app to look like.

The purpose of the app we are building today is to plot the MATLAB expression entered
into the Edit Field at the top of the figure. The graph will be plotted between the two
values in the Edit Fields in the bottom right Panel. The Check Box will toggle the grid on
and off. The Drop Down Menu will be used select the colour of the graph.

The first exercise will produce the minimum required to get the app working. The following
exercises will each add more controls and extra functionality.

1

Function to Plot

Grid Colour

Limits

Axes

Edit Field

Edit Field PanelCheck
Box

Drop Down
Menu

min max

Exercise 1 (The Basic Program)

In this exercise you will create your app and start laying out the graphical objects and
controls. You will also automatically generate the MATLAB program and edit it to produce
a basic function plotter.

Start the App Designer

Select the HOME icon bar at the top of the
MATLAB window.

R2017a and R2017b
Then in the New menu, under the yellow plus sign,
select App then App Designer.

R2018a and R2018b
Then in the New menu, under the yellow plus sign,
select App.

You can also open it by enter appdesigner in the
command window.

 The Component Browser

On the right of the App Designer window you will find the
Component Browser as show on the right. At the start,
the design only has a single figure show as
app.UIFigure.

Click on app.UIFigure in the browser, to select the figure, then click in the grey region in
the browser below app.UIFigure to deselect the figure.

The grey rectangle in the centre of the window is the figure. Notice that this has a blue
edge when selected. You can also select the figure by clicking on the rectangle.

The Property Editor

The Property Editor is below Component Browser.

Select the figure to observe the figure properties.
Change the title to Function Plot as shown on the
right.

Notice that in the browser the figure has changed
name to app.FunctionPlotUIFigure.

2

Setting the Figure Size

In the bottom left and right hand corners of the designer window are arrows that
allow you to collapse and expand the panels on the left and right hand sides. Try
these out now.

Collapse the panels on the right, but leave the Component Library open on the left.

Maximise the designer window.

Drag the bottom right hand corner on the figure so that the figure occupies the majority of
the space between Component Library and the right hand side.

The designer window should now look something like this.

3

Placing the Components on the Figure

You should be on the CANVAS tab at the top of the
window. On the VIEW region of the icon bar, enable
Show grid and set the Interval to 25, as shown on
the right.

Drag an Edit Field (Text) from the Component
Library, to the top of the figure, approximately one
square from the top. Then drag the little blue
squares to make it bigger.

Drag an Axes onto the figure below the Edit Field.
Resize the Axes so that it looks something like this.

4

Component Properties

Expand the panel on the right hand side so that you can see the Component Properties
window. Then click on the Edit Field at the top of the figure.

• If you click once on the Edit Field, you
select the whole edit field including the
label.
The properties of both are shown in the Component Properties window.

• If you then Click on the Label or the
Edit Field box, you only get the
properties of the Label or the Edit
Field.

• If you double click on the Label or in
the Edit Field box, you can edit the
Label text or the text in the Edit Field
box.

Change the properties of the Edit Field so that :
1. The font of both the Label and the Edit Field are 16 point, Arial, Bold.

2. The Label text is Function to Plot and the text in the Edit Field box is sin(x).
You may need to adjust the size of the Edit Field again.

3. The text in the Edit Field box is centred.

Select the Axes and in the Component properties window:
1. Empty the Title box.

2. MATLAB release R2018a and older
Under Appearance turn on the box and the grid.

MATLAB release R2018b
Under Grids tick both XGrid and YGrid

In the Component Browser window, double click on the Axes and change the name to
MainUIAxes.

5

The figure should now look like this.

Saving and Viewing the MATLAB code.

Save the app as FunctionPlot.mlapp.

We have finished the layout of the app for now. The next step is to look at the code.

Above the top right of the figure is a box as show on the right.
Click on Code View.

At first sight, the code can look quite intimidating. However, all code in the program so far
is not editable. You cannot change it even if you wanted to. You can create a perfectly
functional app without understanding this code.

Click on the Run icon on the icon bar.

The program creates the figure and all the components. You can type things into
the Function to Plot Edit Field, but it does not do anything as yet.

6

Creating a Call Back Function

We want something to happen when we type something into the Edit Field. For that we
need a callback function that will execute after the text in the field has been changed.

There are two Edit Field callback functions available.

Value Changing Function Executes for every key press inside the Edit Field.

Value Changed Function
Executes when enter is pressed in the Edit Field or you
click outside the Edit Field after entering text.

We want a Value Changed Function.

In the Component Browser on the right,
select the Edit Field.

In the Code Browser on the left, select

Callbacks and click on the + Callback button.

Make sure that the Value
Changed Function is selected
and then hit the OK button.

7

You should now be able to see the callback function in the code.

Notice that we have for the first time a section of code that is not greyed. We can edit the
code in the white box in the function. However, before we do that, we are going to create
our own function in the code that we can use in the callback function.

8

method (Access = private)

 % Value changed function: FunctiontoPlotEditField
 function FunctiontoPlotEditFieldValueChanged(app, event)
 value = app.FunctiontoPlotEditField.Value;

 end
end

Adding Your Own Functions

In the Code Browser on the left, select
Functions and click on the down arrow next to

+ Function and in the menu that appears,

select + Public Function.

The following gets inserted into the code

In the Code Browser, click on Callbacks and
select the function
FunctiontoPlotEditFieldValueChanged

Cut the following from the callback function:

In the Code Browser, click on Functions and
select the function
func(app,...)

Paste the line of code, that you cut out earlier, into the function func.

This line of code takes the text written in the Edit Field and puts it into the variable value.
This will contain the MATLAB expression that we want to plot.

9

methods (Access = public)

 function results = func(app)

 end

end

 value = app.FunctiontoPlotEditField.Value;

 function results = func(app)
 value = app.FunctiontoPlotEditField.Value;
 end

We will assume that the expression typed in will use x as the independent variable.

To plot a graph, we need to
• Produce a vector containing values of x.
• Read in the text from the edit field
• Evaluate the expression in the text for every value in x and put the result into a

variable y.
• Plot x y.

Rename func to replot and make the following changes:

Notice that when you plot in the app, you need to specify which axes the plot is going go
into.

Use the Code Browser to go back the the callback function
FunctiontoPlotEditFieldValueChanged and add the following into the function.

Save and run the app.

Try entering you own MATLAB expressions into the edit field on the app and see if it plots.

10

 replot(app)

methods (Access = public)

function replot(app)
% Function to replot the graph

% Define the limits of x
minx = -5;
maxx = 5;

 %Produce the x values
 x = linspace(minx,maxx,1000);

 % Read in the string from the Edit Field
 value = app.FunctiontoPlotEditField.Value;

 % Evaluate the string as a MATLAB expression
 y = eval(value);

 %Plot the graph
 plot(app.MainUIAxes,x,y)

end
end

The Startup Function

If you restart the app, you will find that the default expression at start time is not plotted.
You can change this by calling replot in the figure startup function.

First we need to create a figure startup function.

In the Component Browser, select the figure called app.FunctionPlotUIFigure.

In the Code Browser on the left, select Callbacks and click on the + Callback button.

Make sure that the selections
are as shown on the right.

Then click on OK.

Then call the replot function in the Startup function.

Save the app.

Run the app. You should find that sin(x) is plotted straight away.

11

 replot(app)

Exercise 2 (Expression Error Recovery)

Enter an erroneous expression into the function to be plotted.
For example, x^2 will not work because a dot is needed after the x.

At the moment the program crashes. What would be better is to detect the error and
report what is going wrong without crashing the program.

In the function FunctiontoPlotEditFieldValueChanged, replace

with

Save the app.

Run the app.

Enter the expression again to see the error dialogue. The program should not crash this
time.

12

 replot(app)

 try
 replot(app);
 catch err
 errordlg(err.message,'Expression Error');
 end

Exercise 3 (The Grid Check Box)
In this exercise, you will add a Check Box to toggle the grid on and off.

Editing the Design

Return to the Design View by clicking in the box above and to
the right of the code.

Drag a Check Box onto the figure
 about one square below the main axes
 so that the left hand side is approximately in line with the left hand edge of main axes.

The Check Box properties will be shown in the Component Properties window.
Change the following properties of the Check Box.

1. Selected (Value in R2018b) should be ticked.

2. Change the Text to Grid

3. Change the font to 16 point, Arial, Bold.

13

Editing the Code

We can determine the state of the Check Box by looking at it's value.
• If the Check Box is ticked, the value will be one.
• If the Check Box is not ticked, the value will be zero.

Return to the Code View.

Select the Check Box in the Component Browser.

In the Code Browser, select Callbacks and click on the + Callback button.

Select a Value Changed Function.

In the callback function for the Check Box, add the following code.

Run the app and test the Check Box.

14

%Read in the status of the Check Box
Status = app.CheckBox.Value;

if (Status) % the Check Box is ticked
 %Turn on both grids
 app.MainUIAxes.XGrid = 'on';
 app.MainUIAxes.YGrid = 'on';
else
 %Turn off both grids
 app.MainUIAxes.XGrid = 'off';
 app.MainUIAxes.YGrid = 'off';
end

Exercise 4 (The Colour Drop Down Menu)
In this exercise you will add a Drop Down menu to change the colour of the line.

Drag a Drop Down onto the figure to the right of the grid Check Box.

Change the following properties of the Drop
Down:

1. Change the Label to Colour.

2. Change it so there are only three
options.

3. Option1 to Red

4. Option2 to Green

5. Option3 to Blue

6. Set Green as the default colour at
start up.

7. Change the font to 16 point, Arial,
Bold.

R2017a - R2018a

R2018b

15

Edit the function replot. Replace the plot command:

with the following code.

Save and run the app. Select a different colour using the pop-up menu. Don't worry if the
colour does not change straight away. At this stage the colour will only change after a
new expression has been entered. So enter a new expression.

Question 1

The reason that the colour only changes when you enter a new expression is that replot
only runs at the start of the program and in the callback function of the Edit Field. It does
not run when you select a new colour with the Drop Down menu.

What can you do to force the graph to plot when you select a new colour?

The answer is on the next page.

16

 %Plot the graph
 plot(app.MainUIAxes,x,y)

 %Get the colour from the Drop Down menu
 col = app.ColourDropDown.Value;

 %Plot the graph
 plot(app.MainUIAxes,x,y,col)

Answer to Question 1

You call the function replot in the Drop Down menu callback function.

Select app.ColourDropDown in the Component Browser.

In the Code Browser, select Callbacks and click on the + Callback button.

The selections should be as
shown on the right.
Hit the OK button.

Edit the callback function ColourDropDownValueChanged.
Remove all the code in the function and replace with replot(app);

17

function ColourDropDownValueChanged(app, event)
replot(app);

end

Exercise 5 (X Axis Limits)
In this exercise you are going to add a panel with two Edit Fields that specify the limits of
the X axis.

Drag a Panel onto the figure. Don't worry about the size or position of the Panel yet.
Just drag it to the centre of the figure.
Change the following properties of the Panel.

1. Set Title to Limits.

2. Change the font to 16 point, Arial, Bold.

Drag a Edit Field (Numeric) into the Panel.
Select the Label of the Edit Field, then:

1. Set Text to Min.

2. Centre the text both vertically and horizontally.

3. Change the font to 16 point, Arial, Bold.

Drag the label above the Edit Field box and adjust the position
so that you see an orange centre line through both the Label and
the box.

Select the box of the Edit Field, then:

1. Centre the Value.

2. Change the font to 16 point, Arial, Bold.

Click on the Edit Field away from the both the Label and the box, so that both are
selected.

Then drag the entire Edit Field to the top left
corner of the panel.

Right click on the Edit Field and select
Duplicate.

Drag the new Edit Field to the right and adjust
until you see orange lines to show that both
Edit Fields are aligned.

18

Change the Text of the new Edit Field to Max.

Click on the Panel and drag the bottom edge of the panel up, to just below the Edit Fields.

Drag the Panel to the bottom right corner of the Figure.

If there is not sufficient room for the Panel, resize the MainUIAxes to make extra space
available.

Change the Value of the Min to -5 and the Max to 5.

In the function replot, change

to

Add a callback function for each Edit Field to run replot when the value has been
changed.

Save and run the app.

19

% Define the limits of x
minx = app.MinEditField.Value;
maxx = app.MaxEditField.Value;

% Define the limits of x
minx = -5;
maxx = 5;

Exercise 6 (Using the App in other MATLAB Programs)

Make sure that the App has been saved, then quit the App Designer.

In the MATLAB Command Window enter

to run the app.

The app is an object. You can access the app using the same method used to access a
graphical object.

This means that you can use the app in your own programs.
You should have a MATLAB script called UseApp. Open the script to see what it does and
then run the script.

UseApp.m

20

>> FunctionPlot

>> myapp = FunctionPlot
>> myapp.MainUIAxes

%UseApp
%This program shows how you can get your own programs to use the
App.

%Launch the App. fp is the app object
fp = FunctionPlot;

% Change the Function to Plot Edit Field
fp.FunctiontoPlotEditField.Value = '4*x.^3 - 3*x';

%Change the Limits of the graph
fp.MaxEditField.Value = 1;
fp.MinEditField.Value = -1;

%Change the Colours available
fp.ColourDropDown.Items = { 'Red' 'Green' 'Blue' 'Magenta' 'Cyan'
};

%Change the Colour of the Graph
fp.ColourDropDown.Value = 'Cyan';

%Replot the graph using the public function in the App.
fp.replot();

Exercise 7 (Packaging a MATLAB App)

You may have noticed the APPS tab at the top of MATLAB. You can package up your App
so the other users can install the App onto the APPS tab.

Right click on FunctionPlot.mlapp in the MATLAB Current Folder window
and select Open to open the App in the App Designer.

Click on the Designer tab at the top of the window.

R2017a and R2017b

Click on the Package App Icon

R2018a and R2018b

Click of the Share Icon
Then select MATLAB App

Fill in whatever details you want, e.g. Author Name

Hit the Package button on the right. Wait for it to say Packaging Complete.

Close the Package App window.

You will see a number a new files have appeared.

Function Plot.prj The project file that contains the information that you have
entered in to the Package App window. Clicking on this file
will reopen the project in the Package App window.

Function Plot.mlappinstall Is the file to install the app into MATLAB. This is the file that
you send to users that want to use the app.

To install the App into MATLAB, double click file Function Plot.mlappinstall.

The installed App will not run while you are in the this folder. Right click in the Current
Folder window and select New Folder. Then double click on the New Folder.

To run the app, click on the down arrow on the right of the Apps banner at the top of
MATLAB.

Under MY APPS, click on Function Plot.

To remove the app, right click on the app and select Uninstall.

21

