
Matlab Exercises
Part 1

 version 7.1, EJP, 2019

1. Start matlab.

2. Enter the following

1 + 2
x = 1 + 2
x = 1 + 2;
y = x^2 + 2*x + 8

3. Enter the following

format longE
pi

You can use the arrow keys and
the delete key to recall and edit
previous commands. Press the up
arrow key twice to recall the format
command and delete the "e" and
press enter. Then display pi again.
Repeat with the following formats.

format shortE
format short

4. Enter the following

a = pi/6
sin(a)^2 + cos(a)^2
exp(2*log(3) + 3*log(2))

5. Enter the following

a = [1 2 3]
b = [4 5 6]
Z = a + i*b

i here is the square root of -1.
You can use j instead if that is what
you are use to.

6. Display the real and
 imaginary parts of Z
 and the conjugate of Z.

7. Display the angle
 and magnitude and of Z.

8. Try the following.

Z'
Z.'

1

9. Enter the following matrix

 A= [1 2
3 4]

10. Try the following and ensure
you can follow what is happening.

B = A + 4
A + B
A - B
A * B
A^2
A'

11. Solve the simultaneous
equation on page 15 of the notes.
A should already be present from
exercise 10.

b = [5 ; 11]
x = A \ b

Now check that x is the correct
solution.

A * x

12. It is just as easy to solve a
hundred simultaneous equations in
a hundred variables. First create a
100 by 100 matrix of random
numbers.

A1 = rand(100);

If you forget to put in the
semicolon, 10,000 numbers will be
printed out.

Next create a column vector with
100 numbers

b = (1:100)'

Now solve

x = A1 \ b

Check that the solution is correct.

A1 * x

2

Part 2

1. You should have the two
matrices

A= [1 2
3 4]

B = A+ 5

from exercise 10 in part 1.
If not, then enter them again.

 2. Now try the following array
operations.

A .* B
A ./ B
A .^ B
sin(A * pi/6)
D = A.^2
sqrt(D)

Clear the workspace of all
variables.

clear

3. Plot the polynomial 2 x3
−x

x = linspace(-1,1,100);
y = 2*x.^3 -x;

 What happens if you don't
 include the dot ?

plot(x,y)

Don't close the figure containing
the plot.

4. Plot the polynomial 2 x3
−x

using the function polyval. First
find out how to use polyval using
the help.

doc polyval

p = [4 0 -3 0]
y1 = polyval(p,x);

hold on
plot(x,y1,'g')

5. There are many functions that
handle polynomials. Look them up
in the help. Enter doc polyval
again, then click on Functions on
the blue banner at the top of the
window.

What does the function roots do?

6. Plot the roots of the polynomial
onto the graph.

r = roots(p)
ry = zeros(3,1)

The plot should still be held from
exercise 4.

plot(r,ry,'rx')

Clear the figure
clf

3

7. Enter the following.

a = 2: 0.5 : 4

a(2)
a([2 4])
a(2:4)
a(2:end)

8. Enter the following

w = (1:5)' * (5:10)

This produce a 5 by 6 matrix that
we can use in the next exercise.

Set the third element on the second
row of w to 100.

9. Enter the following

w(2:4,2:4)
w(2,:)
w(:,5)
w([1 5],[2,4])
w(:)
w(:) = 1:30

10. By now you should have a
nice collection of variables. Try

who
whos

If you cannot see the workspace
window, click on the HOME tab and
then click on Layout in the
ENVIROMENT section and select
Three Column.

Enter the following in the command
window.

save
clear

All variables should have been
saved to matlab.mat . If you can't
see this in the Current Folder
window, right click in the window
and select refresh.

The workspace window should be
empty. Double click on
matlab.mat to restore all your
variables.

 11. Produce a script called
 mygraph.

edit mygraph

In mygraph enter

 x = linspace(-2*pi,2*pi,100);
 y = sin(x);
 plot(x,y)
 grid

Save by clicking on the icon
and run by entering

mygraph

in the command window.

12. Add the following at the end of
the script created above.

 hold on
 y1 = mysin(x);
 plot(x,y1,'r:')
 axis([-2*pi,2*pi,-2,2])

Click on the "Save and Run" icon

4

13. You should have a file called mysqrt.m. Edit this file

edit mysqrt

function x=mysqrt(A)

 % My square root function.
 %
 % x = mysqrt(A)
 %
 % x is the square root of A.

 x=1; %First guess
 err=1; %Set error to something to get started

 while(err>0.0001)
 x = myfunction(A,x); % call to local function below
 err = abs(A -x.^2); % calculate the error
 end

 function y = myfunction(A,x)
 % Local function to calculate the
 % Newton Raphson Iteration equation

 y = (x.^2+A)./(2*x);

Test the function by enter the following into the command window.

mysqrt(9)
mysqrt(2)
help mysqrt

5

14. You are now going to use the debugger on the function above.

In addition to the editor, you need to be able to see the Workspace window.

In the editor, find the line containing x = 1; Between the line number and the
line, you will find a "-" sign on its own vertical bar. Clicking on this sign turns it
into a red dot. This is a break point. A break point is where the program will
stop so that you can debug the program. You can toggle the break point on
and off by clicking on it.

With a break point set on the line noted above, run the program.

mysqrt(2)

The program will stop on the line with the breakpoint. A green arrow indicates
the next line to run. Note that the "Workspace" window is showing variables
available in the program. You can use the variable editor or the command
line to change the value of the variables.

On the icon bar you will now find the following icons.

If you put the cursor over an icon and leave it for a while, a description of what
the icon does is displayed.

The Step icon steps through the program one line at a time. Step through at
least one loop of the while loop. Notice the variables changing in the
"Workspace" window.

The Step In icon is very like step, except when the line contains a call to a
function. Step will treat the function as one line of code, while Step In will
step into the function and step through the function. Try this out.

Step Out reverse a Step In. If you are inside a function, a Step Out will
execute the rest of the function, exit the function and then stop again. Step
into the local function and try a Step Out. If you hit Step Out in the top
function, the program will run to completion.

The Continue icon restarts the program from the current point in the program.
It will run to the next breakpoint or completion. Try this now.

Close the editor.

6

15. Enter the following

 degrees = 0:6:360;
 rad = degrees * pi /180;
 plot(sin(rad))

Close the graph and repeat the first
two commands by double clicking
on them in the Command History
window. If you cannot see this
window, from the HOME tab select
Layout► Command History
►Docked

16. Drag the plot command
from the Command History into
the command window and change
it to :-

 plot(degrees,sin(rad))

See how the plot changes.

17. Hold down control and select
each of the following commands in
the Command History Window,

 degrees = 0:6:360;
 rad = degrees * pi /180;
 plot(degrees,sin(rad))

then press the right mouse button
and select Create Script.
Save the file as graph1.m

18. Annotate the graph by
adding the following lines to the
script.

 axis([0 360 -1 1])
 title('Sine Wave')
 xlabel('degrees')
 ylabel('value')
 grid

Observe the resulting graph.

19. Change the title and the plot
command so that a cosine wave is
plotted in green. Save as graph2.

20. Change the title and the plot
command so that tan is plotted in
red. Change the y limits to -10 to
10. Save as graph3.

21. Now try a subplot command.
In the command window enter.

 subplot(3,1,1)
 graph1
 subplot(3,1,2)
 graph2
 subplot(3,1,3)
 graph3

Don't forget that you can use the
cursor keys to recall previous
commands.

22. Clear the figure and enter the
following.

clf
graph1
hold on
graph2
hold off
figure
graph3

Now delete the extra figures.

delete(2)

And clear the workspace
clear

7

23. You should have a
spreadsheet call XLfile.xls in the
current directory.

Double click on the file XLfile.xls

For Output Type, select Column
vectors.

Click on the green tick to import the
data.

Close the import window.

If you look at the Workspace
window, you will see that the data
from the spread sheet has been
imported into MATLAB.

24. Hold down the control key and
select X and Y in the workspace
window.

On the MATLAB icon bar, select
the PLOTS tab.

Select plot.

25. Under View on the figure icon
bar, select Property Editor.

Click on the line of the graph.

Try different line styles, thickness
and colour.

Try different markers. Change the
size of the markers and try different
fill and line colours.

Click on the white background of
the graph.

Add a title "My Graph" and a grid in
the x and y directions.

Set the XLabel to "Time" and set
the XLimits to 0 to 2*pi.

Set the YLabel to "Amplitude".

From the file Menu, on the banner
of the figure, select
Generate Code.

A function containing the code is
opened in the MATLAB editor.
Save the file to createfigure.m

Close the editor and the figure.

26. Run the M file you have just
created.

createfigure(X,Y)

8

