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Abstract—Running an application in a data center, users have
an important goal: performance. Even though mismatched appli-
cation requirements and network resource assignments can lead
to significant performance loss, the understanding of dynamic
networking effects on data center applications’ performance is
still limited. In this paper we present NRG, an open source
toolset that enables reproducible experimentation and provides
a networking perspective on applications’ performance. NRG is
a portable and programmable solution operating at line rate,
and enabling users to recreate data center network conditions
as a black box within controlled, small-scale experimentation
environments. We demonstrate the potential of NRG to solve
performance issues and provide insights on several applications.

Index Terms—Reproducibility, Data Center, Performance

I. INTRODUCTION

Cloud computing is an appealing environment for many
users: it is relatively cheap, does not require maintenance by
the user, promises availability, and provides performance that
is better than most users can achieve on their local systems.
The data centers enabling these cloud environments are driven
by performance and cost, trying to appeal to end users and
aspects of application performance within data centers have
been extensively studied (e.g., [1], [2]).

Network performance within the data center can be defined
in many different ways: one application may target throughput
as a performance metric, while another might prefer tail la-
tency as the main performance goal. But the mapping between
network performance metrics and application performance
metrics such as cost, power efficiency, and task completion
time is often not clear.

In this paper, we assert that improving application perfor-
mance requires understanding application interaction with the
underlying infrastructure, and as is the focus of this work:
the network. Without understanding which applications are
network intensive and which are network agnostic, data center
resource allocation cannot be optimal. A mismatch between
application requirements and network resources can lead to
reduced application performance and affect resource utiliza-
tion [3]. Unfortunately, the data center network is a black box,
obscured from the user, and it is hard to infer the network’s
effects on an application, let alone in a reproducible manner.
Small-scale experiments can provide the observability and

reproducibility required, but lack realistic data center network
conditions, meaning performance can remain a mystery.

We introduce NRG, a Network Research Gadget (pro-
nounced en-er-gy). NRG enables reproducible networking
experimentation through network emulation and monitoring
— recreating realistic data center network conditions in small-
scale environments. NRG is an open-source hardware-software
toolset with bandwidth and nanosecond-scale latency and
jitter control, providing a black box representation of a data
center network. NRG also provides a programmable, hardware
accelerated, line-rate monitoring frameworks that offloads in-
formation processing from the end-host to the network and
alleviates the need for frequent network probing. NRG can
be either standalone or a core within a network device. We
prototype NRG on NetFPGA SUME [4], port it to two more
FPGA platforms, and partially to Intel Tofino ASIC.

We use NRG to generate Network Profiles, the combination
of an application’s performance and the characteristics of
the underlying network. NRG considers high-level application
performance metrics (e.g., queries per second) over network
performance metrics (e.g., flow completion time), allowing
direct understanding of how network configuration affects ap-
plication performance. Using two case studies, we demonstrate
that network profiles unveil application performance problems
and enable better network provisioning.

In summary, this paper makes the following contributions:
• We introduce NRG, a hardware-software toolset for repro-
ducible networking research.
• We introduce the concept of Network Profiles to characterize
an application’s performance based on network characteristics,
and a generation methodology using NRG.
• We describe a case-study using NRG to understand the
performance of four typical data center applications.
• We describe a case-study using NRG to debug users’ per-
formance issues, and show the importance of the nanosecond
and microsecond scale monitoring enabled by NRG.

II. MOTIVATION

Determining the best provision for a cloud application can
be challenging. Cloud computing provides compute resource
choices, from the type of virtual machine (VM) to the CPU.
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(a) Local bare-metal
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(c) Cloud VM

Fig. 1: Normalized performance for applications operating on (a) bare-metal local machines, (b) within a VM on an otherwise
quiescent local machine, and (c) within a VM in the cloud.

Networking resource selection is limited, and CPU or VM-
class often dictates available bandwidth and sometimes la-
tency. Even if an application’s network properties are known,
it is hard to infer the optimum choice of cloud resources.

Once a cloud application is deployed, it is difficult to assess
the weight of different factors on the overall application’s per-
formance. If a change in an application’s code unintentionally
affects performance, it is hard to find and debug it, even if the
effect is at the scale of tens of percentages.

To illustrate the challenge, we compare applications’ perfor-
mance in three different environments: a local (self-controlled)
data center, VMs within local data center, and a cloud envi-
ronment (Azure). In each experiment we set two machines,
e.g., one as a client and one as a server, and run an application
benchmark 100 times. There are no other running workloads or
cross traffic in the local data center experiments. In the cloud
environment, the VMs are set within the same data center.
The applications we choose are Memcached (key-value store),
Apache (web server), Spark GLM (machine learning) and iperf
(throughput test). The applications are further described in our
artifact [5]. Figure 1 illustrates the performance variance per
application, where the performance metric varies between ap-
plications (e.g., training time, requests/second). The maximum
performance achieved is normalized as 1.0, and the change in
performance is over 100 runs.

As Figure 1 shows, the differences between running on a
local machine, either (a) on bare-metal or (b) on a VM, and
(c) in a cloud environment are large. Locally, the differences
between the 25th and 75th percentiles are negligible for
Memcached, Apache and iperf, and around 2% for Spark. In
contrast, in the cloud environment, there can be over 20%
difference in performance between runs, and between the
25th and 75th percentiles the differences in performance can
reach 8%. These results demonstrate clearly that it is hard to
benchmark performance improvement of cloud applications,
and to validate performance-related code changes.

Our experiment does not show that the network is the cause
of variance. It does demonstrate, however, the difficulty of
running reproducible experimentation in the cloud, especially
where the goal is applications’ performance benchmarking.

Any approach to reproduction of a system exists on a

spectrum of precision, accuracy, repeatability, correctness and
so-forth. Balancing these allows many choices, from simu-
lator to simplified test, and from emulation to a complete
environment. Emulation environments such as Mininet [6]
offer many desirable properties, but trade-in functionality with
performance and complexity. Simulators such as ns-2 and ns-
3, enable repeatability in results, yet have known drawbacks:
often limited in completeness, unconstrained by CPU or mem-
ory usage in the same way an actual implementation would
be, and bounded by extremely long simulation times.

Software-based emulation tools such as DummyNet [7]
and NetEm [8] fail to emulate the network both at high
data rates and at microsecond-level latency [9]. To illustrate
through an experiment, in Figure 2 we measure the accuracy
of microsecond-scale delay imposed by NetEm and NRG on
a packet, using the setup described in §V-B and in [5]. As the
figure shows, the delay error (y-axis) increases as latency (x-
axis) decreases. For 1µs delay, the median latency imposed by
NetEm may be up to five times higher than requested. In con-
trast, NRG provides nanosecond-scale precision. Microsecond
scale latency is increasingly important in data centers [2], with
VM-to-VM latency being on few microseconds scale. Given
the sensitivity of applications to microsecond scale latency [3],
we need to be able to emulate network latency, using higher
resolution and precision than provided by software emulation.

In NRG, we focus on a subset of these challenges. NRG
provides a realistic local evaluation environment that can pro-
vide each and every time the same (network) test conditions.
Coupled with that, NRG also provides an emulation of the
data center network as a “black box”, in terms of latency and
bandwidth. NRG provides nanosecond-resolution control over
latency combined with support of line-rate traffic. The data
rate supported by NRG is the same as an instantiated network
device (NIC, switch or bump-in-the-wire), and seamlessly
scales with it. By changing configuration seeds, NRG enables
creating similar-but-not-identical scenarios, yet still repeatable,
enabling users to explore a wider range of “what can go
wrong” scenarios. Beyond that, NRG depends on the user’s
network and not on the user’s hosts, and is not constrained by
CPU resource limitations.
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Fig. 2: The measured error of median delay under various
loads, using NetEm and NRG. NetEm introduces up to 500%
error for a microsecond delay, whereas NRG error is two
orders of magnitude smaller, in the order of nanoseconds.
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Fig. 3: A cloud-based black box experimentation model. NRG
replaces part or all of the network black box.

III. NETWORK PROFILES

Small network changes may produce large performance
changes. Network Profiles refer to a collection of network-
related characteristics and their relation to an application’s
performance. Network profiles are designed for users with an
application to deploy and a given system setup (e.g., servers,
NICs, operating system) but who wish to know:
• Is my application bottlenecked by the network?
• Is the network well utilized?
• Can network changes improve applications’ performance?

NRG allows to run on a local setup experiments that actively
change network conditions (bandwidth, latency, burst size) and
passively collect network statistics (e.g., inter-packet gap, link
utilization, flow size). This collection of network conditions
and statistics is the Network Profile of an application on a
given setup.

While the uncontrolled black box cloud network behavior
cannot be predicted, it can be measured [10], [11]. NRG
can use these measurements to reproduce the cloud’s network
behavior, by recreating similar latency (nanosecond-scale),
bandwidth (Mbps resolution) and burstiness (byte-scale) sce-
narios. The operational model of NRG is the substitution of
an uncontrolled cloud-based black box experimentation model
with a local user setup incorporating NRG, as shown in Fig-
ure 3. NRG can act as a bump in the wire or as a transparent
module within a NIC or switch. Wherever NRG is instantiated,
it can programmatically limit available bandwidth and increase

latency for a given link. This, when combined with other
configuration parameters for network: e.g., link MTU, and
application: e.g., process and thread configuration, results in
performance measurements along a multidimensional surface
representing the relationship between performance and the
control parameters.

Figure 4 illustrates network profiles in 3D for a number of
applications; for a given configuration, it illustrates the rela-
tionship between bandwidth and static latency on application
performance. This case study is discussed in § VII.

IV. NRG ARCHITECTURE

NRG is a hardware/software toolset permitting fine-grained
control and measurement of network characteristics for repro-
ducible networked-systems research. NRG works in a con-
trolled experimentation environment. NRG combines a set of
properties required for reproducible experimentation:
• A software module for experiment orchestration, configura-
tion and control of multiple nodes in a system.
• A hardware module, emulating the network black box, on
nanosecond resolution and at line rate.
• A hardware module, monitoring the network and processing
collected information at line rate.
• A software module, collecting results from all nodes and
hardware modules, and generating network profiles.

An experiment begins by configuring a set of NRG-enabled
devices within a networked-system. Once the setup is ready,
the NRG’s orchestration module triggers the experiment. At
the end of the experiment, the application’s results are col-
lected. Monitoring information is also collected from the
system and from NRG-enabled devices. Last, the collected
information is processed and network profiles are generated.
Control and Orchestration: NRG targets networked systems
of multiple nodes (servers) and allows multiple NRG devices.
A single control and orchestration node sets experiments on all
the participating nodes, by installing applications and setting
system configurations. The same node sets up other NRG-
enabled devices, including platform configuration and loading
software modules.
Network Emulation: Network emulation is an in-band com-
ponent of NRG. It can be a stand-alone bump-in-the-wire de-
vice, or part of a more complex device (e.g., switch).Figure 5
illustrates a typical NRG-enabled device’s architecture. The
in-band network emulation module provides latency control
(delay module), and bandwidth and burstiness control (rate
control module). The emulation module is instantiated after
the data-plane enabling fine-grain functionality, e.g., applying
delay to specific flows indicated by the data plane. The
delay module inserts latency either as a constant, or from
a distribution. Constant latency is equivalent to adapting the
distance between machines. Latency distributions describe a
combination of static and variable latency, using either custom
or pre-defined distributions (e.g., uniform, normal, pareto and
pareto-normal). Delay granularity is on a nanosecond time
scale and depends on the target platform.
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Fig. 4: Normalized performance of several applications when subject to a range of constrained bandwidths and static latencies.
Experiments for these figures are discussed in § VI.
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Fig. 5: An illustration of NRG hardware architecture. Data
plane and control plane connections are omitted for brevity.

Network Monitoring: NRG uses hardware acceleration to
provide network insights with no host processing. NRG’s
monitoring is passive, instantiated in parallel to the data plane.
The module monitors properties such as link utilization, inter
packet gap, user defined statistics and more. The module is
triggered at the beginning of an experiment, and logs statistics
only upon events, avoiding unnecessary resource consumption.
Instead of saving individual counters, NRG automatically
generates (probability) distributions of monitored events. The
key insight for the distribution generation is; for most research
and monitoring purposes, some accuracy can be sacrificed
through binning to achieve feasibility.
Data Collection and Processing: At the end of an experiment,
a software module collects instrumentation information from
all nodes to a create network profile. This includes perfor-
mance results from end hosts, statistics from NRG, etc. It also
collects reproducibility data about the system under test. The
module’s second role is processing results aggregated across
experiments, e.g., across a range of latencies. The data from
the monitoring module can present insights, e.g., throughput
as a function of burst size.

A. Network Emulation Architecture

NRG’s network emulation is divided between latency and
rate control. Latency control is designed as a queue (FIFO)
with a release mechanism. Every packet that enters NRG
is timestamped (t), and assigned a delay d. The delay d is
composed of a static latency component and a random latency
component, chosen from a (programmed) latency distribution.

The packet is released from the queue whenever the current
time is bigger than t+ d.

To support variable latency, NRG uses small on-chip mem-
ories (1K-8K entries) that store distributions, and a pseudo
random bit sequence (PRBS) generator that points to random
addresses within the memories. The depth of the memory
determines the granularity of the distribution. The distribu-
tion memory can be populated by the user, or a predefined
distribution can be selected. While the memories define the
shape of the latency distribution, the scale of the distribution
is defined through a multiplier configuration.

NRG’s queue design does not enable reordering, similar
to packets traversing through an identical path. Reordering
is possible between packets of different flows, where some
packets go through the delay module while others don’t.

Rate control is a common function in network devices. NRG
implements it as a FIFO (queue) with a release mechanism
which dictates both bandwidth and burst size. The module is
primarily designed to imitate a lower-speed link. As such, it
effectively reduces the progression speed through the pipeline,
and works on bus-width (byte) level granularity. Typically, the
rate control module will be located after the latency module,
and use a FIFO that is an order of magnitude smaller than
the latency queue. Propagating flow control allows to account
for queueing effects within the rate control module when
discharging packets in the latency module.

V. NRG IMPLEMENTATION

The NRG implementation is open source, available at [5].
It was prototyped on multiple FPGA platforms, and is open
to community contributions. Already, NRG has been used in
several projects (§VI), and has proved portable and useful.
The implementations described below are the ones released
with this project, but users can easily adapt the tool to their
environment and needs. We explore in §V-D design portability.

A. Prototype

The control, orchestration and performance monitoring soft-
ware components are implemented in Python, using C to
interact with the NRG. The prototype supports scripting envi-
ronments, and a GUI for manual configuration and testing. Test



setup and application configuration are taken from files. Each
test can sweep ranges of network parameters (e.g., latency
from 0 to 100µs in 1µs steps using jitter). Tests produce logs
and generate performance graphs.

NRG was first prototyped and evaluated on 4 × 10GE
NetFPGA SUME [4]. The platform allows 5ns latency control
resolution, and bandwidth of 1Mbps to 10Gbps per port.
This is a standalone bump-in-the-wire design, supporting two
ports (for maximum latency scalability). It does not change
relations between competing flows. The monitoring module
supports monitoring per port, pattern match or of a flow.
Multiple monitoring mini-blocks are implemented, such as link
utilization and packet rate, TCP window size and flow size.
The monitoring module consumes few resources; just 0.62%
of logic and 2.2% of memory resources.

B. Validation

We validate our NRG prototype’s functionality and per-
formance using OSNT [12] as a traffic generator and Cisco
Nexus NIC HPT for packet capture, using an optical splitter.
The latency accuracy of NRG is ±30ns independent of the
configured static latency, similar to a NetFPGA reference
design. For latency distribution, we sweep the parameters
of both distribution values, and scale of distribution (i.e.,
from nanoseconds to hundreds of microseconds), and use
Kolmogorov-Smirnov to test fit, and visually compare ex-
pected and actual distributions. Rate control is validated from
zero to 10Gbps.

Monitoring is evaluated using trace capture, comparing the
properties of captured traffic to NRG statistics. The accuracy is
capped by the level of data aggregation (e.g., 1ns, 1µs, 1ms).

The validation shows that NRG works to its specification.
It is not compared with a production data center network, nor
aims to fully recreate a data center environment.

C. Programmability

NRG enables drop-in custom monitoring mini-blocks. These
are not language bound, and we have modules coded in
Verilog, P4 and .NET. We used P4-NetFPGA [13] for a P4-
based implementation, including statistics such as bandwidth,
packet size distribution, and inter-arrival time distribution. Our
implementation of user statistics in .NET used Emu [14], for
example for monitoring packet reordering on a port and flow
level, and for bandwidth statistics.

NRG’s emulation active path, the delay and rate control
modules, are implemented in Verilog. Such modules are less
suitable for high-level languages (e.g., P4), except as externs.

D. Portability

FPGA: FPGA targets can operate as a bump-in-the-wire, as
a NIC and as a limited-size switch. NRG was ported to two
FPGA targets: Xilinx VCU1525 (XCVU9P FPGA) and U280
(XCU280 FPGA), each with 2×100G ports. Running on these
FPGA targets provides higher resolution than on NetFPGA
SUME (4ns vs. 5ns), more on-chip memory (35MB/41MB
vs. 6.5MB) and different network interfaces (100G vs. 10G).

SmartNIC: SmartNIC portability depends on the NIC’s
architecture (ASIC, FPGA or SoC based). NRG can be fully
ported to FPGA-based smartNICs. For other types, portability
depends on the level of programmability.

Switches: We explored porting NRG’s monitoring to two
switch ASICs: Barefoot Tofino and Broadcom Jericho 2. Our
observations are based on coding (Tofino) and discussions with
both ASIC teams. In Tofino, the monitoring design could be
ported with some changes, e.g., using Tofino’s built-in externs,
timestamp counter and registers. The Jericho 2 platform can
support monitoring, but requires porting the code to C++.
Most high-end switches already support rate control with fine
granularity. Latency control, on the other hand, is less feasible.

E. Scalability
Many NRG devices can be used within a system, and

each device is independent from the others. Device setup is
asynchronous, and hardware mechanisms enable starting on a
triggered event (e.g., first packet of a certain type), or on a
configuration trigger. This assists in distributed systems and
does not preclude synchronized operation.

NRG also scales with data rate. Our 10G prototype and
100G prototypes use similar libraries and can continue and
scale with port rate. If we consider the monitoring functional-
ity, NRG will process 150Mpps at the same ease that it pro-
cesses 15Mpps. This is significantly different to the resources
required by host-terminated monitoring application. Latency-
wise, while the number of packets NRG can buffer does not
change with data rate, if data rate increases, the maximal
latency supported at full line rate decreases. Therefore, faster
port rates require deeper memories.

VI. USE CASES

NRG was developed for exploring, understanding and repro-
ducing networked experiments. In this section, we describe a
few potential use cases of NRG and network profiles.
Reproducibility: NRG enables reproducible experiments,
while varying network conditions and emulating a cloud
network as a black box. It enables a stable experimental
environment that recreates network conditions identically be-
tween experiments, and allows recreation of failure conditions.
Latency distribution seeding allows reproducible creation of a
range of congestion scenarios. NRG enables repeatable bench-
marking and comparison of solutions. We envision an NRG-
enabled artifact evaluation environment, to test research arti-
facts prior to publication, and providing reliable performance
comparisons between solutions under different scenarios.
Resource Allocation: Understanding distributed application
performance is hard. NRG enables studying the sensitivities of
applications to bandwidth and latency through experimentation
in controlled environments. Using network profiles, resource
allocation can be improved, such as the number of clients and
their link capacity.
Understanding and Debugging Applications’ Phenomena:
Network Profiles provide a better understanding of applica-
tions’ performance, providing insights beyond a single re-
source. As we show in § VIII, when performance changes,



NRG enables debugging: is it due to congestion or high
network utilization? Has the burstiness changed? Is the net-
work responsible at all, or was network behavior unchanged?
Similarly, NRG enables a software development loop with
network-level application behavior.

VII. CASE STUDY: EXPLORING THE EFFECTS OF THE
NETWORK ON PERFORMANCE

It is known that bandwidth and bandwidth variability affect
performance [15], and that some applications are sensitive to
sub-millisecond latency [3]. In this case study, we use NRG
to explore in a reproducible manner how choices of network
resources affect the performance of different applications. This
is done for a small-scale setup (24 cores), comparable with the
default reserved instances quota in some cloud services [16].

A. Setup and Applications

We use an experimental setup [5] in our local data center
composed of 6 hosts. Each host has an Intel Xeon E5-2637 v4
CPU with four cores (24 total cores), running at 3.5GHz with
64GB RAM. The hosts run Ubuntu Server 16.04, kernel ver-
sion 4.4.0-131-generic, using default network configurations
(e.g., TCP Cubic). Each host is equipped with an Intel X520
NIC, connected at 10Gbps to an Arista 7124FX switch. The
median round-trip time (RTT) between clients and server is
10µs, and only one workload is running at a time (no other
cross-traffic). We use one host as a server and five as client
machines, and instantiate an NRG device between the server
and the switch, acting as a port-level bump-in-the-wire.

We use several popular applications. Their choice explores
increasing application complexity and a number of operating
models. We overtly prefer network intensive applications. The
simplest application is a domain name server (DNS, measured
in requests per second). We also benchmark Apache webserver
(measured in requests per second). We benchmark Mem-
cached, a key-value store application, measured in queries
per second. As a workload, we use Facebook “ETC” [17].
Last, we pick TensorFlow, a machine learning framework, and
use the MNIST dataset for training using distributed learning,
measured with training time.

We study the effect of bandwidth and static latency on
application performance, varying these parameters between the
server and switch. In this way, we emulate a VM with different
bandwidth allocation and different data center location. This
experiment explores the effect of these parameters alone on
the end-to-end performance, and no other perturbations. Each
experiment is run ten times. We generate a network profile
for each application, also containing the variance. Below, we
explore dependencies between application network presence
(e.g., link utilization, packet size) and resource allocation.

The scale of latency may vary significantly between cloud
providers, and over time. The latencies used in our experiments
match previous works [18]. We validated our latency scale in
Azure (using AccelNet). We found [5] latencies on the order
of 128µs-173µs minimum latency and 300µs-500µs median
latency (for different machines).

Fig. 6: The effect of static latency on different applications.

B. Experimental Results

Figure 6 compares the effect of static latency on all four
applications. The times indicate one-way latency and are
applied in both directions, similar to distancing a server from
a switch. The switch-server bandwidth is 10Gbps. Memcached
is extremely sensitive to latency, losing 20% performance with
25µs added, and 58% when 100µs are added. TensorFlow
loses 2.5% performance with 25µs added, and 8.3% with
100µs. At 500µs, or 1ms RTT, all applications lose between
29% (Apache) and 90% (Memcached) performance. While
sensitivity to latency is not new, these results show the
magnitude of the effect even on very short timescale.

Next, we vary both bandwidth and latency and explore
the performance effects (Figure 4). TensorFlow (Figure 4(a))
is almost linearly sensitive to latency and bandwidth. There
is little variability between experiments: <1.5% across all
scenarios. We cannot determine whether TensorFlow is “more
sensitive” to bandwidth or latency. However, we can say, for
example, that (on our setup) TensorFlow with 10G bandwidth
and 100µs of added RTT, will perform slightly worse than
when allocated 9Gbps bandwidth and no added latency. The
monitored network properties (bandwidth utilization, packet
rate, burst size and inter-packet gap) of TensorFlow on server’s
transmit and receive side are similar. Other applications show
significant differences between transmit and receive directions.

One component of TensorFlow’s performance profile is
link utilization. Figure 7(a) shows client-to-server bandwidth
utilization of TensorFlow, with bandwidth of 10Gbps and
varied latencies. As shown, the link is idle more than half
the time, and 20% of the time there is no traffic at all. Despite
that, when no latency is added, TensorFlow utilizes more than
95% of the link for 26.5% of the time. With a millisecond
RTT, the link achieves over 95% utilization for 19.4% of
the time. Therefore, TensorFlow will work best with closely
placed VMs and very high bandwidth links. We explore this
further in [19].

Apache presents a more complex picture (Figure 4(b)).
The performance with bandwidth of 8–10Gbps or 0–100µs
RTT almost does not vary. The performance drops by 10%
with 8Gbps of bandwidth and 100µs RTT, or if the RTT is
200µs. If bandwidth is further reduced, it dominates latency
in performance loss, meaning it is better to have 10Gbps link
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(a) TensorFlow, workers to master
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(b) Apache, clients to server
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Fig. 7: Bandwidth utilization of TensorFlow and Apache. For every latency configuration (x-axis) the graph shows the probability
(z-axis) of a certain link utilization (y-axis), creating a surface of CDFs.

with millisecond latency, than to have a low-latency 2Gbps
link. This is unsurprising given the file transfer nature of
Apache web server. Figures 7(b) and (c) show Apache’s link
utilization in the client-to-server and server-to-client directions
with 10Gbps bandwidth. Requests utilize little bandwidth,
whereas replies utilize most of the link, though not as much
as TensorFlow. As latency increases, Apache’s link utilization
decreases, matching the results in Figure 4.

Memcached (Figure 4(c)) is an interesting case. Our initial
experiment, using typical 80 connections, showed high latency
sensitivity, as also shown in Figure 6, but low sensitivity to
bandwidth, with just 7% performance drop at 2Gbps. These
results are the bottom surface shown in Figure 4(c). Conse-
quently, we reduced bandwidth to 1Gbps, where throughput
dropped by 35%. Even at 1Gbps latency is dominant, meaning
that Memcached with 100µs RTT added has almost identical
performance between 1–10Gbps bandwidth.

While we saturated server performance in our initial setup,
as a second experiment we increased the number of connec-
tions per client thread ×4, to a total of 320 connections per
server (upper surface in Figure 4(c)). The bandwidth sensitiv-
ity remains unchanged, but latency resilience is improved, as
the performance only slightly changes up to 200µs, and with
a smaller performance drop at higher latencies.

For DNS, link utilization was extremely low, under 1Gbps
(see [5]). We found it is server-bound and comparable to
previous works (e.g., [14]).

Investigating burstiness, TensorFlow maximum burst size
scales from 53 packets without added latency, to over 4K
packets with 1ms delay1 (Figure 8). In contrast, for all other
applications the maximum burst declines with latency, e.g.,
from 25 to seven in Memcached and from 27 to 16 in Apache.

We explore variance between experiments. For Memcached,
it is always <0.1%, and for TensorFlow it is <1.5% and
typically <1%. The only application with significant variance
is Apache, with up to 18% variance. This variance decreases
with the number of clients.

C. Discussion

Our experience with TensorFlow reflects the application
design in synchronous training mode, with bursty data dis-
tribution and gradients aggregation. The magnitude of effect

1Two packets are considered a burst if within 100ns from each other.
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Fig. 8: TensorFlow burstsize probability distribution as func-
tion of latency, master to workers. Maximum burst size in-
creases with latency. Colors indicate different latencies in µs.

for small link-bandwidth variances and utilization is important,
as communication dominates some model’s training time [20].
Applications such as Apache and TensorFlow improved as we
added clients and workers, but Memcached is less affected.
Memcached has a known network-related bottleneck due to
request processing overhead relative to payload. This led
Facebook to batch multiple requests within packets [21].

NRG’s network profiles can provide valuable insights for
switch vendors and cloud operators looking to reduce net-
work congestion, by turning deployed programmable network
devices to NRG-enabled. For example, monitoring burst size
information is useful to assess buffer sizing [19]. NRG also
indicates if bursts are frequent, which is beyond watermarks
or telemetry packets [22].

VIII. CASE STUDY: DEBUGGING PERFORMANCE ISSUES

We demonstrate how NRG can aid practical debugging,
in this case a performance issue in the NetFPGA commu-
nity. A NetFPGA SUME Reference Switch is known to run
full line rate of 4 × 10G ports. A NetFPGA community
member reported iperf3 achieving a bandwidth of 8.73Gbps
with multiple retransmissions reported, while a test in the
NetFPGA regression environment resulted in 9.30Gbps and no
retransmissions. The difference was pinpointed to the NICs:
Intel 82599ES had the issue, while Solarflare SFN6122 and
SFC920 did not, running on the same setup. Connecting two
Solarflare NICs directly resulted in the same iperf performance
as with the Reference Switch in-between, while connecting
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Fig. 9: Using NRG to compare Iperf3 network profile on Solarflare (SF) and Intel NICs: (a) Packet size distribution (b) 1K
bandwidth samples, 10ms resolution (c) 1K bandwidth samples, 100µs resolution.

two Intel NICs directly resulted in higher performance than
with the switch in-between, and no retransmissions. Tweaking
NIC configurations (e.g., rx-usecs) improved the performance
but did not eliminate the problem. The user had limited access
to debug and capture equipment.

We turned the user’s switch into an NRG-enabled design by
instantiating NRG’s monitoring core. The user repeated the
tests with NRG. An immediate high-level observation using
network profiles was that the two NICs differ in packet sizes
distribution, shown in Figure 9(a): while Intel NIC sends only
1518B packets, Solarflare’s packet sizes range from 102B to
1518B2. We also observe packet size difference in the other
direction (server to client): 70B on Solarflare vs 64B on Intel.
This packet size difference is also observed with other versions
of iperf. The IPG (inter-packet gap) varies between the two
NICS: for the Intel NIC there is a single IPG of 3 clock cycles,
and 88.5% of the IPGs are 57 to 60 clock cycles or more. For
the Solarflare NIC, 85.7% of the packets have an IPG of 60
to 64 clock cycles, with 0.08% having a shorter IPG.

These observations do not explain the Intel NIC’s per-
formance, but did indicate different dynamics within the
NetFPGA pipeline. Observing the switch input bandwidth
has provided a further insight: iperf reports the bandwidth
using a resolution of seconds. Using measurements taken
over 10ms (Figure 9(b), showing 1K samples) showed the
median bandwidth to be around 9.61Gbps on the Intel NIC and
9.75Gbps on the Solarflare NIC. A higher measurement reso-
lution of 100µs (Figure 9(c), showing 1K samples) showed the
median momentary bandwidth for the Intel NIC is 9.81Gbps
and 9.77Gbps for Solarflare, an effect of the packet size
distribution. Once identified that the Intel NIC had a higher
momentary bandwidth than Solarflare, but with occasional
drops, we tracked the output bandwidth from the device and
identified flow control asserted by the output port of NetFPGA
SUME. The root cause of the performance issue was tracked to
transmit port inefficiency with the NetFPGA design, which led
to the flow control. Fixing this inefficiency solved the problem.

The high-resolution of NRG’s hardware-based bandwidth
measurements helps identify such problems and correct them.
This case study has inspired additional enhancements to NRG,
such as a link utilization mini-block.

2We observe a single 64B IPv4 Packet during both NIC tests

IX. RELATED WORK

Improving the performance of applications in the data center
has been the focus of many works (e.g., [1], [23]), with signif-
icant focus on the contribution of the network to performance
(e.g., [15], [24]). While previous work (e.g., [25]) considered
application performance with the latency between the user and
the data center, our work focuses on latency within the data
center, meaning latencies of orders of magnitude lower.

Latency: Network latency has been identified long ago
as a crucial factor for a good user experience [26]. Today,
microsecond-scale latencies are considered the hardest to
control [2], [3]. As tail latencies are considered an issue for
interactive data center applications [27], several works have
been proposed in this space (e.g., [28], [29]).

Monitoring Tools: Many monitoring tools are being used
in the cloud [30], for purposes ranging from SLA management
to troubleshooting. As NRG is research-focused rather than
e.g., for billing, it allows for some loss of data in return
for longer observation periods. Contrary to other hardware-
based tools [31]–[33], NRG does the processing in the hard-
ware, without sending packets to the host. Solutions such as
Marple [31] can be leveraged to query NRG’s monitoring.

Reproducibility: Networking research is hard to make
repeatable or reproducible [6]. The research community is in-
creasingly aware of the challenge and is encouraging its mem-
bers to contribute published artifacts [34]. In addition to works
introduced in earlier sections, approaches to reproducibility
range from simulation (e.g., ns-2, ns-3), through emulation [6]
and test beds to (relatively) small-scale full reproduction of
a test environment. DataMill [35], an automated system for
running experiments on a distributed system, is part of the
inspiration for NRG. However, DataMill does not provide the
ability to conduct experiments on networks.

X. CONCLUSION

NRG enables profiling the performance of networked-
applications in a reproducible manner. The toolset provides an
insight into applications’ performance, and can advise users
and operators on better resource allocation and placement.
NRG is an open source project, available at [5], [36]. This
work raises no ethical concerns.
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