GREEN SOFTWARE ENGINEERING

Prof Michele Weiland
m.welland@epcc.ed.ac.uk

epcc

mailto:m.Weiland@epcc.ed.ac.uk

The rise and rise of HPC

Computational capacity of the fastest supercomputers

The number of floating-point operations® carried out per second by the fastest supercomputer in any given year.
This is expressed in gigaFLOPS, equivalent to 10’ floating-point operations per second.

1 billion
100 million
10 million
2009 2610 2612 2614 2616 2618 ZdZO 2022‘
Data source: TOP500 Supercomputer Database(2023) OurWorldInData.org/technological-change | CC BY

1. Floating-point operation: A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation
involving floating-point numbers, such as addition, subtraction, multiplication, or division.

epcc

10th October NetDRIVE workshop, Edinburgh

Every tonne of CO, emissions adds to global warming

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissions (GtCO,)

°C
3
SSP5-8.5
The near-linear relationship }
2.5 between the cumulative S55P3-7.0
CO, emissions and global
warming for five illustrative
5 scenarios until year 2050 SSP1-2.6
SSP1-1.9
1.5
1
Historical global
warming
0.5

Cumulative CO, emissions since 1850

0
2000 3000 4000 4500 GtCO,
-0.5 Future cumulative
 —— SSP1-1.9 CO, emission.s differ
2 SSP1-2.6 across scenarios and
determine how much
O SSP3-7.0 warming we will
I S e S SP5-8 5 experience.
o e NN N
3 =¥ = o
2 4 =] o
o v o o
HISTORICAL PROJECTIONS
Cumulative CO, emissions between 1850 and 2019 Cumulative CO, emissions between 2020 and 2050
Figure SPM.10 in IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group | to the Sixth Assessment Report of the Intergovernmental e C C
Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.l. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.

Maycock, T. Waterfield, O. Yelekgi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY,USA, pp. 3-32, doi: 10.1017/9781009157896.001

10th October NetDRIVE workshop, Edinburgh

CO? emissions from HPC & Al infrastructure

Electricity

« Operation
m * Cooling

. Manufacturing

~ * Computer hardware
& * Infrastructure equipment

Construction
 Data centres

epcc

10th October NetDRIVE workshop, Edinburgh

Progress in hardware energy efficiency in the past 10 years...

ENERGY EFFICIENCY PROGRESS

—¢—#1 performance (Pflop/s) —@—#1 power (MW) projected power for Exascale (MW)
10000
June’13: 2 flop/s/W
June’22: 52 flop/s/W
1000 - 25x improvement in energy efficiency in less than 10 years

100 /—0—0—/
[o m o o 2 1
.\i o o
10

1
JUN'1I3NOV'13JUN'14NOV'14JUN'1I5NOV'15JUN"16NOV'16JUN'"17NOV'17JUN"1I8NOV'18JUN"1I9NOV'19JUN'20NOV'20JUN'21INOV'21JUN'22NOV'22 e p C C

10th October NetDRIVE workshop, Edinburgh

i i Energy = Power x time
Green software engineering Joules = Watts x seconds

Hardware is becoming more efficient — what about software?
Minimising power draw?
Minimising energy use?
Minimising emissions?
Maximising science throughput & utilisation?

=>» Different targets, which require different approaches

nnnnnnnnnn

epcc

10th October NetDRIVE workshop, Edinburgh

Ce . Energy = Power x time
1. Minimising power draw Joules = Watts x seconds

Reason: power cap (e.g. infrastructure limitations)

Applications should draw as little power as possible
Even at the expense of using more energy

Avoid power-hungry operations
E.g. vector instructions where there is no performance benefit
Moving data is cheap in terms of power (compared to compute)

nnnnnnnnnn

epcc

10th October NetDRIVE workshop, Edinburgh

Ce . Energy = Power x time
2. Minimising energy use Joules = Watts x seconds

Reason: operational cost reduction

Applications use as little energy as possible to get result
Even at the expense of using more power

Optimising runtime is a key (though not the only) factor
E.g. recomputing data preferrable to moving data

nnnnnnnnnn

epcc

10th October NetDRIVE workshop, Edinburgh

Ce . .. Energy = Power x time
3. Mlnlmlsmg emissions Joules = Watts x seconds

Reason: sustainability

Becoming more complex now...

Emissions do not only depend on the application, but where/when
It IS run

However, an efficient application will inherently incur lower
emissions than an inefficient one

nnnnnnnnnn F0000
Sample numbar

10th October NetDRIVE workshop, Edinburgh

... i Energy = Power x time
4. Maximising science throughput Toules = WVES 2% SaEois

Reason: getting the most out of investment

Applications use as much energy as they need to get results fast
Power and energy use are secondary to runtime

Optimising runtime & parallel efficiency are key factors
Requires understanding of scaling behaviour

nnnnnnnnnn

epcc

10th October NetDRIVE workshop, Edinburgh

Pre-requisites to green software engineering

Impossible to understand how to
iImprove efficiency without performance
and power data

But can be tricky to get access to
accurate power readings

Especially on new architectures or in Cloud
environments

Consistency of data is not guaranteed

This must be made simpler

epcc

10th October NetDRIVE workshop, Edinburgh

ML PerfHPC - Cosmoflow 3D CNN that estimates initial conditions of
the universe based on simulations of

distributed matter

mean epoch time TensorFlow with Keras, uses Horovod for
12000 distributed training

Full datasetis 1.7 TB

524,288 training samples and 65,536
8000 validation samples

10000

Comparing two systems
HPE EX with AMD EPYC Rome CPUs
Two 64-core CPUs per node

6000

TIME (S)

4000 Average power consumption: ~220W per CPU
Power measurements for full node
2000 HPE ICE XA with Intel Skylake CPUs and Nvidia V100
GPUs
Four GPUs per node
0 Average power consumption: 320W per GPU
0 8 16 24 32 40 48 56 64

4 OF CPUS/GPUS Power measurements do not include CPUs

=@~ Nvidia V100 GPUs AMD EPYC Rome CPUs

epcc

NetDRIVE workshop, Edinburgh

10th October

GPU system: better initial performance, but worse scaling

M LPeer PC = COsmOﬂOW CPU system: close to GPU performance at scale - better network, better I/O

=> s it a reasonable comparison? Full node power (ARCHER?2) vs GPUs only (Cirrus)

mean epoch time total energy for 10 epochs
12000 300
40
10000 250
8000 200
_ s
2 >
w 6000 o 150
= 5
= =
w
4000 100
2000 50
0 0
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
OF CPUS/GPUS # OF CPUS/GPUS
—©— Nvidia V100 GPUs AMD EPYC Rome CPUs —©— Nvidia V100 GPUs AMD EPYC Rome CPUs

epcc

Measuring power & energy el

addressing energy in parallel technologies

From Daisy-Chained To FPGA
Card \
et CPU Power
: T e E FPGA Interface
Current IN —> & for Current "
. Measurements —— serial
1234567 88910 '
: : —— 10MP
IE: — 20MP
: 435 — 30MP
D R P e ST RREEREE - BERREL 40MP
Current OUT «— 2

+ FPGAInterface
5 for Voltage

;"" , Measurements
GND
.......... FromDaisy-Chained SEEsEssEEEEEREEEn
Card To FPGA =
g
&
20
System under test Measurement control

15

27-point stencil, 40073, 10 iterations

] 1000 2000 3000 4000 5000 6000
Samples

7000

epcc

10th October NetDRIVE workshop, Edinburgh
4 power
Supp|y lines < m 12V W 3V3 5v W CPU >

addressing energy in parallel technologies
Energy consumption

Power consumption

300

70

Watts
Joules

serial 1TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI serial TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI

 Energy = Power ™ time

epcc

10th October NetDRIVE workshop, Edinburgh

Al e=yn s

[o]] :
R emember N SyS tem e power. addressing energy in parallel technologies
consumes power even if it is i
3V3=0.97W
H H I I
not doing anything “useful’! 5V=5.189W
CPU=9.508W

M 12V W 3V3 5v W CPU

Compute energy = total - idle

Compute power = total - idle
50 140

No amount of green
software engineering
can change the idle
power/energy

Watts
Joules

serial 1TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI serial TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI

Ener gYcompute = Power. compute* time

Power. compute = Power total = Power, idle

epcc

10th October NetDRIVE workshop, Edinburgh

addressing energy in parallel technologies

Comparing identical workload on different systems

MW 12V W 3V3 5 W CPUO W CPU1

120 700

100 600

—~ 500

@ 80 3
g 2 400 No amount of green
= 60 = e software engineering
s > 300 can change the idle
a 40 G 00 - power/energy
20 100
0 0
desktop gaming server desktop gaming server
Idle power Idle energy

epcc

10th October NetDRIVE workshop, Edinburgh

Choice of algorithms

Reverse Cuthill-McKee

Application activity

o _

é — N o CFD application — performs
- f e reordering on the mesh
=y — o Taylor-Green Vortex on 400"3
“ mesh
o 10 nodes of ARCHER2
Space-filling curve (zcurve) o Different algorithms available
Applicaionsctiviy for reordering
| | o RCM
— o zcurve
CPU time " W] r & = 5§ § N [IN] I e IN IN NE § BT X 1 — E

.
System power usage - 1..%-=—====-=ﬁ
338 Wjnode '%J ———
.
Memory usage o [i
4.45 GB —
s |

epcc

10th October NetDRIVE workshop, Edinburgh

mwrr@ln@d:> sacct —j 7741382 ——format=JobID, JobName, ElapsedRaw, NNodes, Con dEnergy

JobID JobName ElapsedRaw NNodes ConsumedEnergy
- - -
7741382 tgv 1007 10 3.02M
—
7741382 .bat+ batch 1007 1 304.71K
7741382 . ext+ extern 1007 16 3.02M
7741382.0 forge-bac+ 964 10 2.92M

mwrr@lnO4:> sacct —-j 7741587 —-format=JobID,JobName, ElapsedRaw,NNodes,Con dEnergy

JobID JobName ElapsedRaw NNodes ConsumedEnergy
Reverse Cuthill-McKee

7741587 tgv 1196 1e 3.57TM
Profiled: ccs_app on 1280 processes, 10 nodes, 2560 cores (2 per procesd{ for 624.3s Saphpled from: Fri Oct 4 11:56:19 2024). @ 7| |/ Threads view Hide Metrics e — s] o2l
: - v 7741587 . ext+ extern 1196 1e 3.57TM
7741587.0 forge-bac+ 1154 1e 3.48M

Application activity

Main thread activity

CPU time
499 %

° — —— === - — - = = = - =" =1

Wﬁ I e I I e e S I e Y

System power usage
343 W/node

857 ——

Memory usage — ===
1.24GB ,_.Z_l —»t_‘
0 #F =
11:56:19-12:06:43 (624.333s): Main thread compute 19.3 %,Pthreads 5.1 %,MP| 30.6 %,File /O 0.3 %, Synchronisation %,0penMP overhead 0.0 %,Sleeping %,Uncategorized 11.5 % Zoom &1]

Space-filling curve (zcurve)

Profiled: ccs_app on 1280 pr 10 nodes, 2560 cores (2 per proce{s) for 796.6s Sgmpled from: Fri Oct 4 12:21:34 2024 9 _-' = @ ; # Threads View Hide Metrics H
- - AA . o RCM is much faster than
Application activity .
Zcurve

Ak, R BRGNS R AR L LAMLLLE
Main thread activity o ~40svs ~157s
NV TV} ' T FITVTYATIV FVITTRIEY BORAWAN WALV | - Case dependent

CPU time LI IR h
499 %

System power usage "’ | R, _7_,_7. _7,7;._ __ 7___ e e L amh et s B AEEE Add Bk) W bEih nmNEkEE 4
A | o, Y il RS Rhel AARA_hidtd RNRARA, I ARRAIR) ol Nt WAMARAY |

336 W/node

Memory usage . L

1.66 GB n {_Zr ——:.__' . - e p C C

12:21:34-12:34:50 (796.574s): Main thread compute 22.6 %,Pthreads .2 %,MPI 27.4 %,File /O 0.3 %,Synchronisation %,0penMP overhead 0.0 %,Sleeping %, Ur ized 8.8 % Zoom | %1 =,

10th October NetDRIVE workshop, Edinburgh

Efficient software # efficient use

600
o Node-level power measurement
F o Each line represents power draw for 1 node
>001 o Full system, 34 nodes in total
= o Idle power draw: 213W
t 400 7 - - - - -
2 o Two identical aerodynamics simulations
9 with OpenFOAM using 32 nodes
O -
. 300 o Onthe left: no I/O
(&)
e o On the right: 110
TR .
2 200 -
[a
100 -
0 1 1 1 1
0 100 200 300 400 500

Samples (minutes)

epcc

10th October NetDRIVE workshop, Edinburgh

Efficient software # efficient use

600
o Node-level power measurement
F — o Each line represents power draw for 1 node
>00° o Full system, 34 nodes in total
— o Idle power draw: 213W
£ 400 1
2 o Two identical aerodynamics simulations
9 with OpenFOAM using 32 nodes
o
< 300 o Onthe left: no 110
(&)
e o On the right: 110
TR .
2 200 -
[a
100 -
0 1 1 1
0 100 300 400 500

ples (minutes)

epcc

10th October

NetDRIVE workshop, Edinburgh

Efficient software # efficient use

N

o

o
]

600
F 1 node
500 -
)
= 400 -)
= tions
(]
©
2 300 -
g
g J ..
(@]
[a

100 A

0 100 200 300 400 500
Samples (minutes)

epcc

10th October NetDRIVE workshop, Edinburgh

Efficient software # efficient use

600
o Node-level power measurement
= ,l WTTRTRI o Each line represents power draw for 1 node
>00° ¥ o Full system, 34 nodes in total
G o Idle power draw: 213W
§ 0 ' o Two identical aerodynamics simulations
;g ‘ with OpenFOAM using 32 nodes
; 3007 H % ‘ o Onthe left: no I/O
g . H B “‘ \ o On th(j:‘ right: 1/O |
g o Excessive I/O means network contention &
frequent stalling
100 -
0 T T T T
0 100 200 300 400 500

Samples (minutes)

Even highly efficient software can be misused to be extremely inefficient epccC

10th October NetDRIVE workshop, Edinburgh

Green software engineering - dos and don’ts

Do capture requirements & write software Don’t jump on band wagons without

that serves its intended purpose justification

Do use CI systems and rigorous testing Don’t be afraid to test new/different
techniques

Do ensure users understand how to use
your software correctly Don’t forgo testing in favour of speed of

Do profile performance, find hotspots and fix development

them Don’t forgo testing at scale because it uses

Do consider if algorithms are appropriate compute cycles

Don’t believe software development for

Do choose programming models based on HPC is not a specialist skill

performance, usability and maintainability
Don’t blindly use code generated by

Do design your code to be modular ChatGPT

epcc

10th October NetDRIVE workshop, Edinburgh

Green software engineering - dos and don’ts

Do capture requirements & write software
that serves its intended purpose

Do use CI systems and rigorous testing

Don’t believe software development for

Do choose progr HPC is not a specialist skill

performance, usa and maintainability

: Don’t blindly use code generated by
Do design your code to be modular ChatGPT

epcc

Final thoughts

Green software engineering is mostly just good software engineering

Efficient, well written software that serves a purpose is inherently “green”
Survey of widely used applications?

Education is key — targeting developers and users alike

HPC systems are that are used to find solutions to many of the problems humanity faces
—> to discover new vaccines
—> to design new renewable energy solutions

—> to model the climate, in order to more accurately predict climate change & its impact

Significantly reducing scientific throughput is a false economy

“Green” software engineering therefore must target maximum throughput!

epcc

	Slide 1: Green Software Engineering
	Slide 2: The rise and rise of HPC
	Slide 4
	Slide 5: CO2 emissions from HPC & AI infrastructure
	Slide 6: Progress in hardware energy efficiency in the past 10 years…
	Slide 7: Green software engineering
	Slide 8: 1. Minimising power draw
	Slide 9: 2. Minimising energy use
	Slide 10: 3. Minimising emissions
	Slide 11: 4. Maximising science throughput
	Slide 12: Pre-requisites to green software engineering
	Slide 13: MLPerfHPC - Cosmoflow
	Slide 14: MLPerfHPC - Cosmoflow
	Slide 15: Measuring power & energy
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Choice of algorithms
	Slide 20: Choice of algorithms – the full picture
	Slide 21: Efficient software ≠ efficient use
	Slide 22: Efficient software ≠ efficient use
	Slide 23: Efficient software ≠ efficient use
	Slide 24: Efficient software ≠ efficient use
	Slide 25: Green software engineering - dos and don’ts
	Slide 26: Green software engineering - dos and don’ts
	Slide 27: Final thoughts

