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The rise and rise of HPC

Computational capacity of the fastest supercomputers

The number of floating-point operations® carried out per second by the fastest supercomputer in any given year.
This is expressed in gigaFLOPS, equivalent to 10’ floating-point operations per second.
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Data source: TOP500 Supercomputer Database(2023) OurWorldInData.org/technological-change | CC BY

1. Floating-point operation: A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation
involving floating-point numbers, such as addition, subtraction, multiplication, or division.
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Every tonne of CO, emissions adds to global warming

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissions (GtCO,)
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CO? emissions from HPC & Al infrastructure
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Progress in hardware energy efficiency in the past 10 years...

ENERGY EFFICIENCY PROGRESS

—¢—#1 performance (Pflop/s) —@—#1 power (MW) projected power for Exascale (MW)
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i i Energy = Power x time
Green software engineering Joules = Watts x seconds

Hardware is becoming more efficient — what about software?
Minimising power draw?
Minimising energy use?
Minimising emissions?
Maximising science throughput & utilisation?

=>» Different targets, which require different approaches
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Ce . Energy = Power x time
1. Minimising power draw Joules = Watts x seconds

Reason: power cap (e.g. infrastructure limitations)

Applications should draw as little power as possible
Even at the expense of using more energy

Avoid power-hungry operations
E.g. vector instructions where there is no performance benefit
Moving data is cheap in terms of power (compared to compute)
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Ce . Energy = Power x time
2. Minimising energy use Joules = Watts x seconds

Reason: operational cost reduction

Applications use as little energy as possible to get result
Even at the expense of using more power

Optimising runtime is a key (though not the only) factor
E.g. recomputing data preferrable to moving data
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Ce . .. Energy = Power x time
3. Mlnlmlsmg emissions Joules = Watts x seconds

Reason: sustainability

Becoming more complex now...

Emissions do not only depend on the application, but where/when
It IS run

However, an efficient application will inherently incur lower
emissions than an inefficient one
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... i Energy = Power x time
4. Maximising science throughput Toules = WVES 2% SaEois

Reason: getting the most out of investment

Applications use as much energy as they need to get results fast
Power and energy use are secondary to runtime

Optimising runtime & parallel efficiency are key factors
Requires understanding of scaling behaviour
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Pre-requisites to green software engineering

Impossible to understand how to
iImprove efficiency without performance
and power data

But can be tricky to get access to
accurate power readings

Especially on new architectures or in Cloud
environments

Consistency of data is not guaranteed

This must be made simpler
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ML PerfHPC - Cosmoflow 3D CNN that estimates initial conditions of
the universe based on simulations of

distributed matter

mean epoch time TensorFlow with Keras, uses Horovod for
12000 distributed training

Full datasetis 1.7 TB

524,288 training samples and 65,536
8000 validation samples
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Comparing two systems
HPE EX with AMD EPYC Rome CPUs
Two 64-core CPUs per node
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TIME (S)

4000 Average power consumption: ~220W per CPU
Power measurements for full node
2000 HPE ICE XA with Intel Skylake CPUs and Nvidia V100
GPUs
Four GPUs per node
0 Average power consumption: 320W per GPU
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10th October

GPU system: better initial performance, but worse scaling

M LPeer PC = COsmOﬂOW CPU system: close to GPU performance at scale - better network, better I/O

=> s it a reasonable comparison? Full node power (ARCHER?2) vs GPUs only (Cirrus)
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Measuring power & energy el

addressing energy in parallel technologies
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4 power
Supp|y lines < m 12V W 3V3 5v W CPU >

addressing energy in parallel technologies
Energy consumption

Power consumption

300

70

Watts
Joules

serial 1TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI serial TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI

 Energy = Power ™ time
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CPU=9.508W
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Compute energy = total - idle

Compute power = total - idle
50 140

No amount of green
software engineering
can change the idle
power/energy

Watts
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serial 1TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI serial TOMP 1MPI 20MP 2MPI 30MP 3MPI 40MP 4MPI

Ener gYcompute = Power. compute* time

Power. compute = Power total = Power, idle
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addressing energy in parallel technologies

Comparing identical workload on different systems
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Choice of algorithms

Reverse Cuthill-McKee

Application activity
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mwrr@ln@d:> sacct —j 7741382 ——format=JobID, JobName, ElapsedRaw, NNodes, Con dEnergy

JobID JobName ElapsedRaw NNodes ConsumedEnergy
- - -
7741382 tgv 1007 10 3.02M
—
7741382 .bat+ batch 1007 1 304.71K
7741382 . ext+ extern 1007 16 3.02M
7741382.0 forge-bac+ 964 10 2.92M

mwrr@lnO4:> sacct —-j 7741587 —-format=JobID,JobName, ElapsedRaw,NNodes,Con dEnergy

JobID JobName ElapsedRaw NNodes ConsumedEnergy
Reverse Cuthill-McKee

7741587 tgv 1196 1e 3.57TM
Profiled: ccs_app on 1280 processes, 10 nodes, 2560 cores (2 per procesd{ for 624.3s Saphpled from: Fri Oct 4 11:56:19 2024 ). @ 7| |/ Threads view Hide Metrics e — s ] o2l
: - v 7741587 . ext+ extern 1196 1e 3.57TM
7741587.0 forge-bac+ 1154 1e 3.48M

Application activity

Main thread activity
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Efficient software # efficient use
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Efficient software # efficient use

600
o Node-level power measurement
F — o Each line represents power draw for 1 node
>00° o Full system, 34 nodes in total
— o Idle power draw: 213W
£ 400 1
2 o Two identical aerodynamics simulations
9 with OpenFOAM using 32 nodes
o
< 300 o Onthe left: no 110
(&)
e o On the right: 110
TR .
2 200 -
[a
100 -
0 1 1 1
0 100 300 400 500

ples (minutes)

epcc



10th October

NetDRIVE workshop, Edinburgh

Efficient software # efficient use
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Efficient software # efficient use

600
o Node-level power measurement
= ,l WTTRTRI o Each line represents power draw for 1 node
>00° ¥ o Full system, 34 nodes in total
G o Idle power draw: 213W
§ 0 ' o Two identical aerodynamics simulations
;g ‘ with OpenFOAM using 32 nodes
; 3007 H % ‘ o Onthe left: no I/O
g . H B “‘ \ o On th(j:‘ right: 1/O |
g o Excessive I/O means network contention &
frequent stalling
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0 T T T T
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Even highly efficient software can be misused to be extremely inefficient epccC
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Green software engineering - dos and don’ts

Do capture requirements & write software Don’t jump on band wagons without

that serves its intended purpose justification

Do use CI systems and rigorous testing Don’t be afraid to test new/different
techniques

Do ensure users understand how to use
your software correctly Don’t forgo testing in favour of speed of

Do profile performance, find hotspots and fix development

them Don’t forgo testing at scale because it uses

Do consider if algorithms are appropriate compute cycles

Don’t believe software development for

Do choose programming models based on HPC is not a specialist skill

performance, usability and maintainability
Don’t blindly use code generated by

Do design your code to be modular ChatGPT
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Green software engineering - dos and don’ts

Do capture requirements & write software
that serves its intended purpose

Do use CI systems and rigorous testing

Don’t believe software development for

Do choose progr HPC is not a specialist skill

performance, usa and maintainability

: Don’t blindly use code generated by
Do design your code to be modular ChatGPT
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Final thoughts

Green software engineering is mostly just good software engineering

Efficient, well written software that serves a purpose is inherently “green”
Survey of widely used applications?

Education is key — targeting developers and users alike

HPC systems are that are used to find solutions to many of the problems humanity faces
—> to discover new vaccines
—> to design new renewable energy solutions

—> to model the climate, in order to more accurately predict climate change & its impact

Significantly reducing scientific throughput is a false economy

“Green” software engineering therefore must target maximum throughput!
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