Edge Acceleration of LIDAR Frame Transmission with In-network
Machine Learning

Peng Qian
peng.qian@eng.ox.ac.uk
Department of Engineering Science,
University of Oxford
Oxford, United Kingdom

ABSTRACT

In real-time vehicle perception scenarios, ensuring timely and sta-
ble transmission of LiDAR data between vehicles and the network
edge is crucial for accurate object detection. However, the inher-
ent variability of wireless links, coupled with the added impact of
vehicle mobility, leads to inevitable packet loss and latency jitter,
compromising both the timeliness and accuracy of vehicle per-
ception. To address this challenge, we introduce a packet duplica-
tion mechanism on dual wireless links, improving LiDAR frame
transmission performance. The solution is driven by an integrated
In-Network Machine Learning module at a programmable edge
device that dynamically detects performance degradation and con-
trols packet duplication. Through practical implementation and
extensive evaluation, it is demonstrated that the proposed packet
duplication function can effectively address uncertainties in LIDAR
frame transmission, while achieving 50% reduction in transmission
times.

KEYWORDS

In-network Machine Learning, P4, Edge computing, Vehicle per-
ception

1 INTRODUCTION

The past decade has witnessed significant advancements in the field
of autonomous driving, particularly in real-time vehicle perception,
which relies on timely Light Detection and Ranging (LiDAR) data
transmission and processing. On the one hand, due to the rapid
development of deep neural networks, core tasks such as scene
and object recognition, can now be performed in real-time with
milliseconds-level latency. On the other hand, the deployment of
new wireless communication technologies (e.g., the new 5G radio)
lays a robust foundation for enabling Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication. However, the in-
herent uncertainty of wireless networks in vehicular environments
presents a significant challenge for ensuring the real-time delivery
of LIDAR data, which remains an issue that has not been thoroughly
evaluated and addressed.

A glance at recent works [3] [10] shows that while various
Vehicle-to-Everything (V2X) frameworks have been deployed and
tested across real-world networks, these studies primarily focused
on reducing data size through redundancy elimination or vehicle-
edge collaboration across different access network types. For in-
stance, EMP [10] tackled visual redundancy by merging frames
and offloading real-time perception tasks to the edge via 4G link,
achieving vehicle recognition in milliseconds. Soar [3] introduced
a WiFi-based approach that clusters adjacent WiFi access nodes to

Changgang Zheng
changgang.zheng@eng.ox.ac.uk
Department of Engineering Science,
University of Oxford
Oxford, United Kingdom

Noa Zilberman
noa.zilberman@eng.ox.ac.uk
Department of Engineering Science,
University of Oxford
Oxford, United Kingdom

improve mobility support, enabling real-time LiDAR frame trans-
mission to vehicles within campus area. However, a common limita-
tion of these approaches is the lack of feasible solutions addressing
sluggish and unstable LiDAR frame transmissions, which are often
caused by unavoidable network fluctuations.

Inspired by these advancements in wireless network frameworks,
towards a fast and robust LiDAR frame transmission performance,
we propose an In-Network Machine-Learning (IN-ML) driven dual-
link packet duplication mechanism. The mechanism has two key
components: 1) Packet duplication on dual links. Each packet in
a LiDAR frame can be directly cloned on sender side across both
Wi-Fi and cellular links, then the receiver keeps only the first arrival
replica of each packet, mitigating the uncertainties of wireless links.
2) A trainable in-network machine learning component detects
network performance degradation in real-time, and dynamically
activates the packet duplication function when needed. The two
components leverage the computational power of programmable
edge network devices, which have been widely proven to intro-
duce negligible latency overhead when running machine learning
tasks and various network optimization operations [11], [5]. This
allows tasks to be executed on such a platform without adding
additional latency, ensuring no impact on vehicle perception sce-
narios which set strict millisecond-level requirements. Through
implementation and extensive evaluation with a public dataset and
a vehicle perception algorithm, the proposed packet duplication
function demonstrates both effectiveness and performance robust-
ness, achieving around 50% reduction in transmission latency. This
mechanism offers network operators the flexibility to plan network
links and deploy them in scenarios requiring critical data uploads,
key area monitoring, or urgent danger notifications.

The main contributions of this work are as follows:

e We developed an IN-ML plugin featuring a trainable deci-
sion tree algorithm that dynamically detects transmission
performance degradation and automatically activates packet
duplication when necessary.

o We designed a packet duplication function that can be seam-
lessly deployed on programmable devices at network edges
and within vehicles, enabling dual-link utilization to improve
LiDAR frame transmission performance, with no additional
header encapsulation required.

e We implemented and tested the proposed mechanism us-
ing public datasets and algorithms, under various network
conditions. The demonstrated improvements and scenarios
comparisons offer practical guidance for deploying such IN-
ML based solutions, and tailoring them to various vehicular
data transmission needs.

Conference’17, July 2017, Washington, DC, USA

P4 data plane function (sender side)

Peng Qian, Changgang Zheng, and Noa Zilberman

P4 data plane function (receiver side)

P4 code generated by trained IN-ML
and customized for sender

¢

Training model of IN-ML

function

featurel valuel

feature2 value2

Extract packet information and
convert to feature values

| Look up the ML decision tree to
H decide whether to enable

E duplication

| No s

Packet clone

Changz}s&:ond
packet’s MAC address

| Forward packets |

Lo

0x0001

Forward 2

2 Drop

[

Register <bit<1>>
id_seen

Filter IP address and
ort
Read IP Packet ID and ptetg <,bit<32>>
.. packet_arrival _count
check duplication

Figure 1: The proposed IN-ML driven packet duplication function pair

2 P4-BASED PACKET DUPLICATION EDGE
FUNCTION DESIGN

In this section, we review the literature in two key areas: LIDAR
frame size reduction techniques through cooperative vehicle per-
ception frameworks, and the role of programmable network devices
in enhancing network acceleration and resilience, which together
form the foundation for our high-throughput, low-latency packet
duplication strategy.

2.1 Cooperative Vehicle Perception Framework

Chen et al. [9] proposed a feature learning network to perform
spatial feature fusion and voxel feature fusion, effectively reducing
raw LiDAR point cloud frame data from 2 MB to less than 1 MB. By
offloading object fusion and detection tasks to the network edge,
the communication cost is significantly reduced while achieving
a 10% improvement in vehicle perception precision within a 20-
meter range and a 30% improvement at farther distances. Similarly,
Zhang et al. [10] introduced EMP, an edge-assisted multi-vehicle
perception system to aggregate raw sensor data from nearby vehi-
cles. Using adaptive partitioning and bandwidth-aware algorithms,
EMP reduced data transmission size and achieved real-time pro-
cessing with low latency. Khan et al. [13] proposed VRF, which
speeds up LiDAR frame transmission through a two-stage fusing
process—first aligning frames to a common reference and then re-
fining the alignment—ensuring centimeter-level precision. Luo et
al. [8] proposed a scalable transmission strategy based on maxi-
mum cost flow theory, to enabled vehicles to upload LiDAR data
to an edge server via 5G V2X multi-hop communication, creat-
ing a comprehensive and detailed perception view. In Soar[3], Shi
et al. presented an innovative smart roadside infrastructure (SRI)
system that enhanced autonomous driving via infrastructure assis-
tance, leveraging WiFi for connectivity. Using off-the-shelf 802.11ac
interfaces, Soar created a bi-directional multi-hop Infrastructure-to-
Infrastructure (I2I) network and an Infrastructure-to-Vehicle (12V)
broadcast service, supporting data rates of up to 100 Mbps across

up to 9 hops. Deployed across 18 lamppost nodes, Soar supports a
diverse range of autonomous driving applications while achieving
desirable real-time performance.

2.2 Network Optimization Powered by
In-Network Machine Learning

The strict millisecond-level transmission time of LIDAR makes us fo-
cus on programmable network devices in this work, which not only
provide flexible programmability but also offer high performance
and low latency [5]. Devices such as Switch Application-Specific
Integrated Circuits (ASICs), Network Interface Cards (NICs), and
Field Programmable Gate Array (FPGA)-based systems now lever-
age the domain-specific language P4 [17] to directly define and
tailor network protocols within the data plane, enabling advanced
network functions and optimising resource utilization. This pro-
grammability not only supports custom protocol design but also
opens opportunities for offloading complex computations onto net-
work devices, allowing processing to occur entirely within these
programmable units. For example, packet and flow classification
tasks [4] have been successfully implemented on data-plane hard-
ware using popular machine learning algorithms in a hybrid fashion.
The evaluation demonstrated that near-optimal classification results
are achievable while significantly reducing latency and server load.
Similarly, the authors in [12] proposed a knowledge distill model to
transfers knowledge from complex models to the binary decision
tree, enabling indirect deployment within switches and improving
efficiency for packet classification task. Reinforcement learning-
based load balancing (e.g., QCMP [6]) achieves line-rate throughput
with minimal latency by dynamically distributing traffic based on
real-time conditions, preventing congestion and optimising per-
formance. Leveraging programmable hardware, these algorithms
enable real-time detection, classification, and inference with faster
response times than traditional centralized monitoring.

After reviewing these two types of studies, we find that existing
cooperative frameworks focus mainly on the design and deploy-
ment of specific networks and encoded frames, lacking solutions

Edge Acceleration of LiDAR Frame Transmission with In-network Machine Learning

for network uncertainty and protocol behaviour [20]. This moti-
vates us to explore this issue using high-performance, low-latency
programmable devices. While packet duplication has been applied
across protocol layers, a purely Layer 3 solution remains unex-
plored. Compared to Layer 2-based 5G duplication [21], which is
limited to specific access methods and lacks dynamic configuration,
application-driven flexibility, and customizability, our approach
offers greater adaptability. Similarly, multipath transport-layer so-
lutions [22] require additional connection management, congestion
control algorithms, and redundant kernel packet processing, intro-
ducing significant overhead. In contrast, our IN-ML-driven Layer
3 approach eliminates these inefficiencies while complementing
existing methods by enabling seamless integration with various
underlying access technologies and adapting to diverse upper-layer
application requirements.

3 P4-BASED PACKET DUPLICATION
FUNCTION DESIGN

In this section, we describe the proposed mechanism consisting of
two main components. The first is a dual-link packet duplication
function, and the second is a network condition detection function
leveraging an IN-ML plugin (e.g., Planter [11]) to dynamically sense
and infer if the current network link is experiencing congestion or
instability, subsequently triggering the packet duplication function.

In this work, the following scenario is considered: the vehicle acts
as the sender of LIDAR data, while the network edge server serves as
the receiver. Assuming in a given area, there is only one vehicle able
to capture the real-time image, while other vehicles cannot observe
the area due to obstructions. Therefore, it is crucial to ensure that
the data from this vehicle in the unobstructed position is delivered
promptly and reliably. This guarantees that the considered area
can be comprehensively identified at the edge. The information
exchange model is that the data-sending function is deployed on
the vehicle, while the receiving program operates on the network
edge server.

The rationale behind the dual-link packet duplication function,
implemented using the P4 language on a programmable device, lies
in enhancing data transmission reliability. By replicating packets
and sending them simultaneously across multiple links, the packet
is ensured to reach its destination through the best link conditions
at any given moment. In our design, this packet replication func-
tionality is divided into two components: the sender-side function
and the receiver-side function (see Fig. 1).

3.1 Sender-Side Function Design

The packet duplication function in P4 relies on the clone operation,
which uses a globally defined session in the switch. This session
allows cloned packets to be identified and appropriately processed
throughout the pipeline.

A global flag variable on the programmable switch is defined to
dynamically determine whether packet cloning should be activated,
based on current network conditions and application requirements.
The conditions for enabling packet duplication are as follows: (1)
the destination IP address and port of incoming packet must match
those of the LiDAR frame processing program running on the re-
ceiving server, and (2) based on specific features extracted at the

Conference’17, July 2017, Washington, DC, USA

time of packet arrival, a predefined group of lookup tables in the
IN-ML inference module must confirm that packet duplication is
required by setting the corresponding flag.

Once packet duplication is enabled, a clone function will be called
for packets directed to the target destination. This function binds a
unique clone session ID to the packet and specifies the clone type
as CloneType. I2E (Ingress-to-Egress). The session ID is linked to
an egress port on the secondary link, allowing duplicated packets
to be routed over a different path.

As the cloned packet enters the egress stage, it can be identified
by examining the standard_metadata.instance_type field. At
this point, additional modifications are applied to ensure proper
handling and differentiation: the destination MAC address is up-
dated according to the egress port configuration for the secondary
link, and the Type of Service (ToS) field is set to a specific value.
This ToS field modification enables cloned packets to be easily dis-
tinguished from original packets and allows the network to process
them differently.

3.2 Receiver-Side Function Design

The primary function of the receiver-side system is to monitor
incoming LiDAR data packets, ensuring that only one copy of each
unique packet is retained by discarding duplicates that arrive later.

In order to track duplicated packets and their arrival time, we
designed two registers, id_seen: to track if a specific packet ID
has been seen before, and packet_arrival_count: to counts the
arrival instances of packets with a particular ID. When a valid IPv4
packet with a traced source IP and non-zero identification field ar-
rives, the code reads its IP ID into a metadata structure meta.ip_id.
Then the arrival count of this packet will be increased by one. If an-
other packet with the same packet ID arrives later, the receiver will
lookup the id_seen register with the packet ID, and if its value is
one, this replica will be marked as drop through a metadata flag. At
the same time, the register packet_arrival_count will increase
one accordingly. It is worth mentioning that since the IP packet
ID is a 32-bit non-negative integer, in a LIDAR frame streaming
process, this 32-bit space can be quickly exhausted due to the high
volume of packet transmissions, causing the sequence numbers to
restart from the beginning. This leads to multiple packets with the
same packet ID arriving on the two links, although they actually
belong to different packets, resulting in incorrect identification as
delayed duplicate packets. In our case, with only two links, we can
reset the state of a specific packet ID using a 1-bit id_seen variable.
However, once this function is deployed to a multi-link scenario, we
need to leverage the packet_arrival_count to record the num-
ber of packet arrivals, allowing for sequence number wraparound
detection.

Moreover, the sender-side and receiver-side functions described
above represent logical deployment positions, tailored for unidirec-
tional flows, such as transmitting LiDAR frames. For acknowledg-
ments returned by the network entity receiving the LiDAR data,
this sender/receiver pair approach can also be applied. Packet du-
plication in both directions can be easily integrated into a unified
code solution. To simplify and clarify the description, we omit the
details on packet duplication pipeline for acknowledgments.

Conference’17, July 2017, Washington, DC, USA

Cumulative Probability

CDF of Network Time

Congestion Window (cwnd) Comparison

Peng Qian, Changgang Zheng, and Noa Zilberman

Arrival Time Difference between two paths (Path 1 - Path 2, ms)

—— Network Transmission Time CDF (w/ packet duplication)
—— Network Transmission Time CDF (w/o packet duplication)

Congestion Window (cwnd)

g

g

wfo packet duplication
w packet duplication 75

Arrival Time Difference (ms)

010 015 030 035 040 3 500

Network Transmission Time (s)

000 1500

(a) Comparison of network transmission time
(CWND)

000

2«
Sample Number

2000 4000 6000
Packet Index

2500 3000 3500 4000 0

(b) Comparison of Congestion Control Window (c) Comparison of arrival time difference on dual links

Figure 2: Comparison between different congestion control algorithms

3.3 Detection of network congestion by IN-ML

As depicted in Fig. 1, a group of feature lookup tables are deployed
at the sender-side switch For IN-ML. The tables are used to match
extracted features from incoming packets, determining if network
congestion is detected.

Two identified key features are inter-arrival time and the num-
ber of duplicate ACKs between consecutive application responses.
For the first feature, in our framework we assume the following
communication pattern for LiDAR frame transmission: an HTTP
client on the vehicle side actively uploads the latest LIDAR frame
to an edge server using an HTTP POST request, and an HTTP
response is sent back from the edge server once the frame is fully
received. Thus, on the frame sender side, the timestamp of each
HTTP response can be recorded, and the inter-arrival time between
consecutive responses is calculated and stored as the first feature.
To constrain the value range, a right shift of 10 bits and a bitwise
AND operations are applied.

The second feature is the number of duplicate ACKs observed
between two HTTP responses. For each ACK packet from the re-
ceiver, the ACK number, which indicates the number of successfully
received bytes, is extracted from the TCP header. At the transport
layer, if a packet is likely to be lost, the receiver will repeatedly
send ACKs with the same acknowledgment number to notify the
sender. This feature thus serves as an indicator of likely packet loss
or reordering within a specified time period, as observed by the
receiver.

Additionally, the frame transmission time is recorded on the
receiver side. Transmission times exceeding a threshold (e.g., 150
ms) are labeled as 1 (congestion experienced), while those below
the threshold are labeled as 0. This dataset containing two types of
features and corresponding label is then loaded into the Planter [11]
IN-ML framework for offline training, using a decision tree model
that ultimately generates the corresponding P4 data plane code for
deployment on the sender side. This P4 code includes the neces-
sary lookup table, runtime table entry insertion commands, and
pipeline functions to assess congestion in real time based on the
input features.

4 IMPLEMENTATION AND EVALUATION
RESULTS

We set up a LIDAR frame transmission and processing system con-
sisting of a client laptop and a server PC. The client, running Ubuntu

22.04, uses a RESTful client to post KITTI frames [16] and hosts an
emulated network with a two-link P4/BMv2 topology in Mininet.
The server, operating in an Ubuntu 20.04/WSL environment on
Windows 11 with an NVIDIA RTX 3090 GPU and 64GB of memory,
runs a RESTful server application to process LiDAR frames and
infer object types and positions using the PointPillars [7] algorithm.

4.1 Network transmission with and without
packet duplication on dual link

A basic test is conducted based on the optimal network conditions
measured in [1], [2]. Specifically, both links are set to have identical
properties: 300 Mbps bandwidth, 30 ms end-to-end delay with a 5 ms
standard deviation, and a 0.05% packet loss ratio. This configuration
allows us to compare the performance of LiDAR data transmission
over a single link versus dual links. The client continuously sends
a point cloud frame 50 times and records the transmission time. As
shown in Fig.2(a), the transmission time for a LIDAR frame can be
reduced by approximately 50%, with a significant improvement on
performance robustness. To understand this improvement, we anal-
yse the TCP layer’s congestion window (cwnd) behaviour, shown
in Fig.2(b). Loss-based and rate-based mechanisms temporarily re-
duce their rates and adopt a conservative approach to gradually
re-probe bandwidth when packet loss or delay fluctuations occur.
Consequently, such signals continuously constrain the transport
layer’s transmission rate. For instance, the cwnd curve without
packet duplication exhibits multiple window reductions, slower
recovery speeds, and lower new limits after each rate drop. With
dual links enabled, each packet can consistently arrive via the link
with the lowest delay, significantly reducing the likelihood of simul-
taneous packet loss on both links. Fig.2(c) illustrates the arrival time
differences for packets across the two links, showing that packets
alternately arrive first on each link. Without one of the links, the
transport layer would perceive a packet delay fluctuation of approx-
imately +10 ms. However, with both links active, such fluctuations
are nearly eliminated, preventing unnecessary rate adjustments.

4.2 Impact of different frame sizes

Next, we evaluate the performance of three frame sizes: the 1802 KB
frame, representing the raw LiDAR data; the 480 KB frame, which
has undergone redundancy removal; and the 120 KB frame, which
is further down-sampled using farthest-point sampling. The mea-
surement results (see Fig.3) indicate that, although reducing frame

Edge Acceleration of LiDAR Frame Transmission with In-network Machine Learning

120KB 480KB 1802KB

101" — w packet duplication 101 — w packet duplication 101" — w packet duplication
2> —— w/o packet duplication | > —— w/o packet duplication > —— wj/o packet duplication
Zos Zo0s8 Zo0s8
3 3 3
8 8 8
Los Sos Los
° o °
2 > 2
o4 o4 Zo4
El El El
5 E £ 02
302 302 3o

0.0 0.0 0.0

010 015 020 005 010 015 020 025 030 05 10 15 20 25

Network Transmission Time (s) Network Transmission Time (s)

Figure 3: Comparison between different frame sizes

size effectively decreases transmission time, considerable fluctu-
ations and poor transmission times still occur under challenging
network conditions. For the 1802 KB frame, there is no doubt that
this raw LiDAR frame cannot be transmitted within an acceptable
latency range, although the dual link packet duplication can reduce
its transmission time by more than 50%. Down-sampling the frame
further to 120 KB with dual-link packet duplication reduces trans-
mission time to around 100 ms but may require extra processing
on the vehicle and edge to mitigate potential object detection accu-
racy loss from sparser point density. Notably, packet duplication
consistently reduces transmission time and stabilizes performance
when bandwidth is sufficient, regardless of frame size.

CDF of Network Transmission Time by Bandwidth

,,va?*’"****‘ 1 18
//
{ f/vlllepSWlo

EJ 14Mbps w/
—— 50Mbps w/

02 % —— 150Mbps w/
00l

CDF of Network Transmission Time by Delay

.

1.0 i E— |

o
©

o
>

o
IS

—— 65ms w/o

65ms w/
—— 25msw/
—— 15ms w/

Cumulative Probability
Cumulative Probability
Cumulative Probability

Network Transmission Time (s)

CDF of Network Transmission Time by Loss

—— loss 1.0% w/o
loss 1.0% w/

—— loss 0.5% w/

—— loss 0.05% w/

v
o
o1 o4 05

—— 250Mbps w/
0.1 0.2 0.3 0.4 0.5 .
Network Transmission Time (s)

1 0.2 0. 0.4
Network Transmission Time (s) Network Transmission Time (s)
Figure 4: Comparison of encoded frame transmission with
(w/) and without (w/o) packet duplication

We consider further encoding the frame to reduce the size to less
than 100 KB. In [10], the raw LiDAR frame can be pre-processed
on the client side before uploading, performing ground removal,
partitioning, and encoding in a sequence. This helps to reduce its
LiDAR frame size to around 38 KB. The baseline link is 14 Mbps
bandwidth, 30 ms delay with 10 ms variation, and 1% packet loss
ratio, to emulate a practical high mobility network [10],[1],[2]. To
investigate the impact of bandwidth, delay, and packet loss, we vary
one parameter at a time while keeping the other parameters fixed
within each group of experiments. Fig. 4 shows the Cumulative
Distribution Function (CDF) comparison of transmission time with
and without packet duplication. The key conclusion from these
subfigures is that while enabling packet duplication under the same
link conditions provides varying degrees of improvement in trans-
mission time, further increasing bandwidth or reducing packet loss
does not yield additional performance gains. In contrast, a con-
tinuous reduction in delay results in a sustained and significant
decrease in transmission time.

This can be attributed to the smaller size of the encoded frame,
which can be transmitted within a few rounds. In this context, due
to the instability of network performance in mobile environments,

05

Conference’17, July 2017, Washington, DC, USA

congestion control algorithms are unable to saturate all available
bandwidth for the TCP connection. Additionally, since the number
of packets is relatively small, even if a large number of packets are
lost in a single round, the reduction in rate only occurs once, and
retransmissions can typically be completed within a few rounds. In
contrast, reliable transport layer protocols inherently rely on a rate
adjustment mechanism based on sending and acknowledgments in
rounds, making any reduction in link delay more impactful for over-
all rate improvement. Therefore, in practical network deployments,
such as at an accident-prone, obstructed intersection, using 5G as a
backup link should prioritize adjusting the base station antenna’s
orientation to minimize obstructions between the target vehicle and
correctly configuring uplink and downlink resource allocation, as
implied by the evaluation results of practical 5G networks [2] [19].

Another observation is that the compressed frame requires 41.3
ms for preprocessing and an additional 19.12 ms for edge-side
decoding. Enabling packet duplication saves at least 50 ms of trans-
mission delay, partially offsetting the processing overhead with
faster network transmission. This provides a means to counteract
the additional processing delays when deploying complex packet
encoding strategies.

4.3 Impact of different congestion control
algorithms

Network Transmission Time Comparison for BBR and CUBIC

—— BBR Dup
BBR No Dup

—— CUBIC Dup
CUBIC No Dup

/\//\V\\/\f\

Network Transmission Time (s)

% 7
Sample Number

Figure 5: Comparison between different congestion control
algorithms with and without packet duplication

We also compared the impact of different congestion control
algorithms, as shown in Fig. 5. Intuitively, because the loss-based
CUBIC [14] algorithm primarily relies on packet loss as a congestion
signal, it tends to more frequently reduce its transmission rate in
response to packet loss events. In contrast, BBR, which adjusts
future transmission rates based on estimated optimal sending rates
for each round, demonstrated relatively better performance. With
packet replication enabled, BBR achieved further improvements in
overall performance.

Given BBR’s known limitation of relatively poor fairness [18],
caution is advised when considering its use in multiple flow scenar-
ios. That said, in cases where multiple vehicles can aggregate data
from the entire scene through V2V communication for processing
and transmission to one frame and transmit it on single connec-
tion, or when key learned features are transmitted, BBR can still be
effective and suitable for mitigating network uncertainty.

Conference’17, July 2017, Washington, DC, USA

No. of Table entry

Precision (w/0 and w/ direct mapping)

Threshold (ms) Accuracy Recall F1

100 0.97 0.99 0.99 0.98 19751 vs 31
150 0.93 0.97 0.96 0.94 19750 vs 31
200 0.79 0.77 0.81 0.86 17914 vs 31
250 0.76 0.77 0.77 0.77 17916 vs 31
300 0.76 0.80 0.76 0.73 17916 vs 31

Table 1: IN-ML parameter settings and impact

4.4 Impact of IN-ML algorithm settings

The impact of parameters in the IN-ML decision tree model is eval-
uated (see in Table 1). When emulating network conditions for
generating training data, the consensus is that a significant gap re-
mains between the network conditions in vehicular networks used
for LiDAR transmission and those in ideal networks. To practically
account for varying network link conditions and their impact on
LiDAR transmission performance, we configured a baseline com-
bination of 300 Mbps bandwidth, 10 ms latency, 1 ms jitter, and
0.01% packet loss as the lower bound for performance timing. Con-
versely, a combination of 14 Mbps bandwidth, 160 ms latency, 10
ms jitter, and 1% packet loss represents the worst-case performance
scenario. The generated transmission time samples (around 5000
samples) ranged from tens of milliseconds to several seconds. As
the above tests have demonstrated that our duplication mechanism
is particularly effective in improving performance when the packet
transmission delay exceeds 100 ms, then we recommend to set the
threshold larger than 100 ms. Once the threshold is set to 100 ms or
150 ms, high model accuracy, precision, F1 score and recall results
can be obtained, while threshold larger than 200 ms will have rela-
tively lower model accuracy, implying ranging 100 ms to 200 ms
would be a proper threshold for our model and settings. Regarding
the number of table entries in the P4 environment, we use a direct
mapping mechanism to reduce the count from over ten thousand
entries to fewer than a hundred. Specifically, this approach maps
logical operations and the tree into a sequence of depth tables and
a decision table. Each depth table applies logical operations to de-
termine the output of a branch at that depth, which then serves as
input for the next depth until the leaf node is reached.

5 CONCLUSION

In this work, we proposed an IN-ML-driven packet duplication func-
tion to enhance the transmission performance of LiDAR frames in
autonomous driving. By monitoring network conditions and ex-
tracting features within programmable devices, the trained IN-ML
model can dynamically determine if packet duplication is neces-
sary. The proposed packet duplication function was implemented
leveraging Planter [11] to automate ML model training and data
plane code generation.

Using tests spanning different packet sizes, network conditions,
and transport-layer congestion control protocols, we demonstrated
that the transmission time of LiDAR frames is significantly reduced
and stabilized. This validates the effectiveness of the approach,
providing a new network deployment strategy for various scenarios
in vehicular perception, such as critical information notifications
and key object image uploads.

Peng Qian, Changgang Zheng, and Noa Zilberman

6 ACKNOWLEDGMENT

This research was partly funded by EU Horizon SmartEdge (101092908,
Innovate UK 10056403). For the purpose of Open Access, the au-
thor has applied a CC BY public copyright license to any Author
Accepted Manuscript (AAM) version arising from this submission.

REFERENCES

[1] Hassan, Ahmad, et al. "Vivisecting mobility management in 5G cellular networks."
Proceedings of the ACM SIGCOMM 2022 Conference. 2022.

[2] Narayanan, Arvind, et al. "A first look at commercial 5G performance on smart-
phones." Proceedings of The Web Conference 2020. 2020.

[3] Shi, Shuyao, et al. "Soar: Design and Deployment of A Smart Roadside Infrastruc-
ture System for Autonomous Driving." ACM MobiCom 2024.

[4] Zheng, Changgang, et al. "IIsy: Hybrid In-Network Classification Using Pro-
grammable Switches." IEEE Transactions on Networking 2024.

[5] Zheng, Changgang, et al. "In-Network Machine Learning Using Programmable
Network Devices: A Survey." IEEE Communications Surveys & Tutorials, 2023.

[6] Zheng, Changgang, et al. "QCMP: Load Balancing via In-Network Reinforcement
Learning" ACM SIGCOMM FIRA workshop, 2023.

[7] Lang, Alex H., et al. "Pointpillars: Fast encoders for object detection from point
clouds.” Proceedings of IEEE/CVF CVPR 2019.

[8] Luo, Guiyang, et al. "Edgecooper: Network-aware cooperative lidar perception
for enhanced vehicular awareness." IEEE Journal on Selected Areas in Communi-
cations 2023.

[9] Chen, Qi, et al. "F-cooper: Feature based cooperative perception for autonomous
vehicle edge computing system using 3D point clouds." IEEE/ACM SEC confer-
ence 2019.

[10] Zhang, Xumiao, et al. "Emp: Edge-assisted multi-vehicle perception” ACM Mobi-

com conference 2021.

Zheng, Changgang, et al. "Planter: Rapid prototyping of in-network machine

learning inference” ACM SIGCOMM Computer Communication Review 54.1

(2024): 2-21.

[12] Xie, Guorui, et al. "Empowering in-network classification in programmable
switches by binary decision tree and knowledge distillation." IEEE/ACM Trans-
actions on Networking 32.1 (2023): 382-395.

[13] Khan, Kaleem Nawaz, et al. "VRF: Vehicle Road-side Point Cloud Fusion" ACM

Mobisys conference 2024.

Ha, Sangtae, et al. "CUBIC: a new TCP-friendly high-speed TCP variant.” ACM

SIGOPS operating systems review 42.5 (2008): 64-74.

Cardwell, Neal, et al. "BBR: congestion-based congestion control." Communica-

tions of the ACM 60.2 (2017): 58-66.

Geiger, Andreas, et al. "Vision meets robotics: The kitti dataset." The International

Journal of Robotics Research 32.11 (2013): 1231-1237.

Bosshart, Pat, et al. "P4: Programming protocol-independent packet processors."

ACM SIGCOMM Computer Communication Review 2014.

[18] Hock, Mario, et al. "Experimental evaluation of BBR congestion control." IEEE

ICNP conference. 2017.

Qian, Peng, et al. "Remote production for live holographic teleportation applica-

tions in 5G networks." IEEE Transactions on Broadcasting 2022.

Cui, Jiaxun, et al. "Coopernaut: End-to-end driving with cooperative perception

for networked vehicles." IEEE/CVF CVPR conference 2022.

Aijaz, Adnan. "Packet duplication in dual connectivity enabled 5G wireless net-

works: Overview and challenges." IEEE Communications Standards Magazine

3.3 (2019): 20-28.

[22] Li, Ming, et al. "Multipath transmission for the internet: A survey." IEEE Commu-
nications Surveys & Tutorials 18.4 (2016): 2887-2925.

[11

[14

[15

[16

[17

[19

[20

[21

	Abstract
	1 Introduction
	2 P4-Based Packet Duplication Edge Function Design
	2.1 Cooperative Vehicle Perception Framework
	2.2 Network Optimization Powered by In-Network Machine Learning

	3 P4-Based Packet Duplication Function Design
	3.1 Sender-Side Function Design
	3.2 Receiver-Side Function Design
	3.3 Detection of network congestion by IN-ML

	4 Implementation and Evaluation results
	4.1 Network transmission with and without packet duplication on dual link
	4.2 Impact of different frame sizes
	4.3 Impact of different congestion control algorithms
	4.4 Impact of IN-ML algorithm settings

	5 Conclusion
	6 Acknowledgment
	References

