
1

In-Network Machine Learning Using Programmable
Network Devices: A Survey

Changgang Zheng , Xinpeng Hong , Damu Ding , Shay Vargaftik , Yaniv Ben-Itzhak ,

Noa Zilberman , Senior Member, IEEE

Abstract—Machine learning is widely used to solve network-
ing challenges, ranging from traffic classification and anomaly
detection to network configuration. However, machine learning
also requires significant processing and often increases the load
on both networks and servers. The introduction of in-network
computing, enabled by programmable network devices, has
allowed to run applications within the network, providing higher
throughput and lower latency. Soon after, in-network machine
learning solutions started to emerge, enabling machine learning
functionality within the network itself.

This survey introduces the concept of in-network machine
learning and provides a comprehensive taxonomy. The survey
provides an introduction to the technology and explains the
different types of machine learning solutions built upon pro-
grammable network devices. It explores the different types of
machine learning models implemented within the network, and
discusses related challenges and solutions. In-network machine
learning can significantly benefit cloud computing and next-
generation networks, and this survey concludes with a discussion
of future trends.

Index Terms—In-network computing; Machine learning; P4;
Programmable data planes; Software Defined Networks.

I. INTRODUCTION

CLOUD and edge computing are becoming powerful,
attending to the increasing flow of data from users

to cloud-based services. The new generation of network-
processing technology revolutionizes network infrastructure as
we know it and supports the increasing demand for network-
traffic forwarding and processing.

Recent network devices are no longer just high-
performance, but also programmable. Switch-ASIC (e.g., [1,
2]), network interface cards (NICs) [3, 4, 5, 6], and FPGA-
based network devices [7] use a domain-specific language,
P4 [8], to define and customize network protocols directly
in the data plane. This programmability enables executing
advanced network functions, and improves resources’ uti-
lization [9, 10]. This brings new opportunities to offload
computations and applications to network devices: computing
entirely within a programmable network devices is called In-
network Computing.

Changgang Zheng, Xinpeng Hong, Damu Ding, and Noa Zilberman are
with the Computing Infrastructure Group, Department of Engineering Science,
University of Oxford (e-mail: changgang.zheng, xinpeng.hong, damu.ding,
noa.zilberman@eng.ox.ac.uk)

Shay Vargaftik, and Yaniv Ben-Itzhak are with the VMware (by
Broadcom) Research Group (e-mail: shayv@vmware.com, yaniv.ben-
itzhak@broadcom.com)

Machine learning (ML) was shown long ago to be useful
for traffic classification [11, 12] and for network anomaly
detection [13]. These network-oriented ML tasks are typically
deployed on servers or middleboxes [14]. However, as data
volume increases so do the processing demands from the
devices running the ML-based tasks.

The popularity of ML for networking, and the rising packet-
processing demands have led to the suggestion that running
ML algorithms on programmable network devices can signif-
icantly improve ML performance in terms of throughput and
latency [15, 16]. Furthermore, it can help reduce memory con-
sumption and communication overheads [17]. Consequently,
a wide range of ML algorithms have been implemented in
different ways on multiple types of programmable network
devices.

In this survey, we distinguish between three forms of
ML execution: General ML, Network-Assisted ML, and In-
Network ML. General ML refers to the case where both the
ML model training and decision making are on the server
side, including deployments on hardware accelerators such as
GPU. Network-Assisted ML uses network devices primarily
for model training acceleration (faster parameter updates)
and better feature collection (more detailed features collected
within the network), while the inference takes place on the end
host. In-Network ML refers to complete ML processes, either
training or inference, done entirely in the network. Commonly
today this refers to In-Network ML Inference, where trained
ML models are running on programmable network devices,
and inference decisions are taken within the network device, as
shown in Figure 1. Offloading ML to programmable network
devices is not straightforward, as there are computational and
hardware resource constraints [16, 18].

This survey paper provides a comprehensive exploration
of in-network ML. It introduces its background and history,
discusses development, methodologies, and implementation
techniques, as well as challenges and their proposed solutions.
While this paper does not assume prior knowledge, we refer

Network-assisted machine
learning

End-hostIn-network
Data plane Control plane

In-network
machine learning

General machine
learning

Fig. 1. The difference between general ML, network-assisted ML, and in-
network ML (The arrow indicates where the decision is made).

https://orcid.org/0000-0003-1894-722X
https://orcid.org/0000-0001-8525-6424
https://orcid.org/0000-0001-9692-7756
https://orcid.org/0000-0002-0982-7894
https://orcid.org/0000-0002-3844-5940
https://orcid.org/0000-0002-3655-2873

2

the reader to previous surveys of ML in the networking
domain [19, 20], and to previous surveys of programmable
data planes [21, 22] for more extensive background, though
neither discussed in-network ML.

In summary, this survey makes the following contributions:
• It clarifies important concepts in the field of ML and

networking.
• It reviews the background for in-network ML and pro-

vides a comparison of target architectures and devices.
• It revisits research history, development, and taxonomy

of in-network ML.
• It comprehensively reports the implementation details of

in-network ML algorithms.
• It summarizes existing challenges for in-network ML and

discusses potential solutions.

§2 Machine Learning for Networking

§1 Introduction

Part I Background of In-Network Machine Learning

Architectures

§3 Programmable Data Planes

Languages Targets

§4 Network-Assisted Machine Learning

Part II Solutions of In-Network Machine Learning

Restricted
Number of

Stages

§7 Challenges and Solutions

Limited
Amount of
Memory

Non-Supported
Data Types

Limited
Computational

Capability

Supervised
Learning

§6 Implementation of In-Network Machine Learning Algorithms

Unsupervised
Learning

Semi-Supervised
Learning

Reinforcement
Learning

§9 Conclusions

§8 Lessons Learned and Future Trends

Control Plane

Tree-Based
Ensemble
Models

Binary Neural
Network

Based Models

Reinforcement
Learning Models

Other
Traditional ML

Models

§5 Development Timeline of In-Network Machine Learning

In-Network Computing

Deployment Scenarios Limitations

Other Limitations

Fig. 2. Organization of the paper.

The rest of this survey is organized as shown in Figure 2.
Section II introduces background of ML in the networking
domain. Section III describes programmable data planes and
existing targets. The concept of in-network computing and
its applications for assisting ML are reported in Section IV.
Section V, classifies in-network ML into several categories
and reports their corresponding use-cases. Detailed implemen-
tations of typical in-network ML algorithms in programmable

network devices are presented in Section VI. Section VII
discusses the challenges of combining ML algorithms and
programmable network devices, and introduces potential solu-
tions. Section VIII summarizes lessons learned and discusses
future trends of in-network ML. Finally, the survey is con-
cluded in Section IX.

II. MACHINE LEARNING FOR NETWORKING

A huge amount of data is flowing through today’s net-
works. The volume will further grow [134, 135] with the
introduction of new network technologies and the increased
adoption of the Internet of Things (IoT), expected to reach
billions of connected devices [19, 136]. The volume of data
contributes to the development of powerful ML models aimed
at improving the effectiveness of networks and networked-
systems. ML is already used in many networking domains,
such as traffic prediction, network analysis, and network
automation. Table I presents nine application domains where
ML is already used [19]: traffic prediction, traffic classifi-
cation, traffic routing, congestion control, quality of service
(QoS)/quality of experience (QoE) management, resource
management, fault management, network security, and chan-
nel modeling. ML algorithms are used in these networking
domains to perform classification, regression, and control
tasks. They can be categorized into supervised learning (e.g.,
Naı̈ve Bayes (NB) [137], Decision Tree (DT) [138], Support
Vector Machine (SVM) [139], semi-supervised learning (e.g.,
Semi-supervised SVMs [140]), unsupervised learning (e.g., k-
Nearest Neighbors (KNN) [141], Autoencoder (AE) [142]),
and reinforcement learning (RL) (e.g., Q-learning [143],
SARSA [144]) algorithms. Among these algorithms, as shown
in Table I, SVM, DT, and Neural Network (NN) are the three
most commonly used ML models for networking applications.
Traffic Classification, QoS&E Management, and Network Se-
curity are the three popular networking use cases for adopting
ML algorithms.

ML algorithms for networking use cases are dominantly de-
ployed on servers or traditional accelerators (e.g., GPUs) [19,
145, 146, 147]. The introduction of programmable network
devices, allowing the deployment of user programs within the
data plane, has opened new venues for ML learning deploy-
ment. Programmable data planes enable high throughput and
low latency packet processing within the network. However,
these devices have inherent limitations compared to resource-
rich environments like CPUs and GPUs. Moreover, the pro-
cessing and programming logic differ significantly between
these types of devices and require different frameworks. To
gain a deeper understanding of in-network ML algorithms, we
introduce programmable data planes in the following section.

III. PROGRAMMABLE DATA PLANES

Software-defined networking (SDN) [148, 149] decouples
the operational planes of network devices, primarily separating
the data plane from the control plane. While SDN supports
network programmability, the initial focus was on changing
forwarding and routing rules, with fixed or reconfigurable

3

TABLE I
SUMMARY OF ML WORKS IN NETWORKING DOMAIN. NOTE THAT THE WORKS IN COLUMN NEURAL NETWORK REFER TO ARTIFICIAL NEURAL
NETWORKS (ANN) IN GENERAL WHILE THE WORKS IN COLUMNS BAYESIAN NETWORK AND RECURRENT NEURAL NETWORK FOCUS ON THE

APPLICATIONS OF THESE TWO NETWORK ARCHITECTURES RESPECTIVELY. THIS TABLE SHOWS A SUBSET OF THE WORKS IN EACH AREA.

ML
Algorithms

Support Vector
Machines

Naı̈ve
Bayes

k-Nearest
Neighbors K-means Decision

Tree
Ensemble

Trees
Neural

Network
Bayesian
Network

Recurrent
Neural Network Q-Learning

Traffic
Prediction [23] [24][25]

[26][27][28] [29]

Traffic
Classification

[30][31][32]
[33][34][35]

[36][37]
[38][39][40]

[38][40]
[41][42]

[43][44]
[45][46][47]

[38][40]
[39][30]

[36][30][48]
[49][38][40][50] [38][40][51]

Traffic
Routing [52][53] [54][55]

[56][57]

Congestion
Control [58] [59][60][61] [59][60][61] [59][60]

[61][62]
[59][60]

[61][62][63] [64][65][66]

Resource
Management [67] [68][69]

[70][71][72] [73][74][75] [76][77][78] [79][80]
[81][82]

Fault
Management [83][84][85] [86][87] [83][84]

[88][89]
[90][91]
[86][92]

[93][94]
[83][95][96] [97]

QoS & QoE
Management [98][99] [98][99] [98] [98][99] [98][100] [101][98]

[99][100] [102][103]

Network
Security

[104][105]
[106][107] [108] [109] [110] [110][104]

[111][105][108]
[104][112]

[113][114][115]
[116][111]
[117][107] [115] [118] [119]

Channel
Modeling [120][121] [122] [123][124] [122][125] [126][127]

[128][129] [130][131] [132][133]

data plane functionality [150]. The introduction of true pro-
grammability into the data plane [151], sometime later, has
enabled changing the functionality of the data plane by users
(e.g., network operators). Nowadays, network applications
can be executed in an in-network manner, meaning that the
program is implemented and executed within the data plane.
In-network applications can adapt to increasing cloud network
infrastructure demands, as they can potentially run at line rate,
operating on all (or a selected subset of) incoming traffic. In
this section, we present a brief overview of programmable
network devices that function as the target devices for in-
network ML and describe the workflow of programming them.

A. Protocol-Independent Switch Architecture

A programmable network device architecture defines the
high level structure of a programmable network devices, and
the interfaces between its major components. All current
architectures are originated from and similar to the most com-
mon architecture called PISA (Protocol Independent Switch
Architecture) [152]. Figure 3 shows PISA, the basic pipeline
architecture for programmable data planes, developed based on
the Reconfigurable Match Tables (RMT) model [151]. PISA
allows network devices to customize packet processing within
the data plane without hardware modifications, making them
independent of vendor-provided, fixed sets of protocols.

000 001 010 011 100 101 110 111

00
0

 0
01

 0
10

 0
11

 1
00

 1
01

 1
10

 1
11 Code 0

0
00*
010
1**
01*
1**
11*

CentroidCode 1
00*
010
011
011
100
101
101

Centroid 0

Centroid 1

Centroid 0’s vertices

Centroid 1’s vertices

Centroid 1&2’s vertices

Code 1

Code 0

Table: Find Cluster

000 001 010 011 100 101 110 111

00
0

 0
01

 0
10

 0
11

 1
00

 1
01

 1
10

 1
11 Code 0

0
00*
010
1**
01*
1**
11*

CentroidCode 1
00*
010
011
011
100
101
101

Centroid 0

Centroid 1

Centroid 0’s vertices

Centroid 1’s vertices

Centroid 1&2’s vertices

Code 1

Code 0

Table: Find Cluster

Parser Match-action pipeline Deparser

Fig. 3. Protocol-Independent Switch Architecture (PISA).

The PISA architecture has three building blocks: a parser,
a deparser, and a match-action pipeline. The parser is a state
machine that extracts a sequence of fields from a packet, called
Packet Header Vector (PHV). The PHV usually contains fields

from packet headers (e.g., Ethernet, IP, VLAN, TCP/UDP) and
intrinsic metadata (e.g., the ingress and egress ports). The PHV
can also include user-defined headers. The extracted vector
is processed in a sequence of logical stages called match-
action stages using match-action tables (M/A tables). M/A
tables are fundamental units that lookup a key value (e.g.,
packet header) in a table, and map the resulting entry to a
corresponding action to be taken on the processed packet. Each
logical stage allows a fixed number of match-action operations,
where a key (an input field from PHV or metadata) is looked
up in a table, and a corresponding action is taken, enabling to
process packets in a predetermined way. Finally, the deparser
reconstructs PHV fields together with packet payload, before
the packets are emitted.

There are several architectures built on top of PISA, includ-
ing both open-source reference architectures and commercial
solutions, such as Portable Switch Architecture (PSA, shown
in Figure 4) [153], Programmable NIC Architecture (PNA,
shown in Figure 7) [154], SimpleSumeSwitch [7], v1model
(shown in Figure 5) [155], and Tofino Native Architecture
(TNA, shown in Figure 4) [156]. Not all programmable
data planes are PISA-based, for example, disaggregated RMT
(dRMT) [157].

Parser Ingress
Control Deparser PRE

TM
Packet
EgressParser Egress

Control Deparser

User & Std Metadata+ Headers

Fig. 4. PSA & TNA data plane architecture. PRE refers to the Packet
Replication Engine and TM indicates Traffic Manager.

B. Data Plane Programming Language

Programming Protocol-Independent Packet Processors (P4)
is a domain-specific language used for network packet process-
ing [8]. P4 provides a flexible and programmable approach to

4

customize packet parsing, matching, forwarding behaviors, and
processing methodologies on network devices. A key feature
of the P4 language is protocol independence, enabling support
of a large number of protocols within a single device by
change of a program. Furthermore, the P4 language supports
flexible interaction between the programmable data plane and
control plane, which enables coordination between the control
logic and packet processing logic on network devices.

Programmable network devices are often programmed using
P4, which does not have a single common compiler or devel-
opment environment. Both commercial software development
environments (SDE) from e.g., Intel, NVIDIA, and open-
source solutions (e.g., BMv2) exist. The open source p4c [158]
is the reference compiler, developed by the P4 community, but
modified by vendors to their specific product. A P4 compiler
takes a program written in P4 and compiles it into a binary
that is executable on a specific target, based on a given data
plane architecture. In general, the term P4 targets refers to
the programmable network devices (e.g., specific switches
or cards) and the term P4 architecture to the structure of
the pipeline, defining the processing flow within a device.
Currently P416 is the commonly used version of P4, and P414
is deprecated.

Verify
ChecksumParser Ingress

Control
Egress
Control

Compute
Checksum DeparserPRE

TM

User & Std Metadata+ Headers

Fig. 5. v1model data plane architecture. PRE refers to the Packet Replication
Engine and TM indicates Traffic Manager.

C. P4 Targets

The P4 language is designed to support a variety of
packet processing targets, including smart network interface
cards (SmartNICs), data processing units (DPUs), field pro-
grammable gate arrays (FPGAs), software switches, and hard-
ware switch-ASICs.

P4-programmable hardware switches are available from
multiple equipment vendors, such as Intel Tofino1, NVIDIA
Spectrum, and Cisco Silicon-One. DPU and SmartNIC ven-
dors include NVIDIA BlueField, Intel IPU, AMD Pensando,
Netronome NFP, and others. These vendors typically support
a family of P4 programmable devices, across multiple gener-
ations.

In addition to hardware targets, there are multiple open-
source implementations of P4-programmable software switch
targets. Behavioral Model version 2 (BMv2) [159] is the
most popular one and the reference P4 software switch. It
supports multiple targets, including Simple Switch based on
the v1model architecture and PSA switch based on PSA.

In the following, we discuss some commonly-used P4
platforms of different types:

1) Switch-ASIC: An Application-Specific Integrated Cir-
cuit (ASIC) is a chip designed for a particular purpose.
Switch-ASICs are specialized devices designed specifically

1the development of this series was stopped in 2023

for packet forwarding, achieving high-throughput and low-
latency switching. Programmable switch-ASICs introduce pro-
grammability into the switch pipeline, but do not compromise
on performance. They are characterized by high throughput
and low latency. Current switch-ASICs exceed 50Tbps and
can process tens of billions of packets per second [160], with
sub-microsecond latency.

Stateful
Memory

Match
Action
Table

Traffic
manager

… …

Pipe 1 Pipe 1

Pipe 2 Pipe 2

Pipe 3 Pipe 3

Pipe M Pipe M
Ingress
Ports

Ingress
Pipeline

Egress
Pipeline

Egress
Port

pkt
PHV: Headers & Metadata

Match
Action
Table

ALU

ALU

Stage 1 Stage 2 Stage 3 … Stage N

…

Fig. 6. Tofino-based switch data plane architecture.

Figure 6 shows as an example the architecture of Intel’s
Tofino switch-ASIC [156]. There are multiple pipes (each
composed of an ingress and an egress pipeline), with multiple
ports associated with each pipe. Pipes are analogues to CPU
processing cores, and similar to them resources such as
memory (e.g., CPU’s L1 cache) and registers are not shared
between pipes. Packets crossing between pipes happens only
between the ingress and egress pipelines, typically through a
shared buffer or a crossbar. This allows the pipes to guarantee
throughput and latency performance, and prevents processing
hazards and concurrent access issues. As a consequence,
register, counter or meter values in pipe 1 (either ingress or
egress pipeline) cannot be read by programs running in pipe 2.
Incoming packets are processed in an ingress pipeline, before
entering the traffic manager, and being processed in an egress
pipeline. The egress pipeline is selected based on the packet’s
output port. Each pipeline contains a certain number of stages,
which can execute operations such as (i.) using match-action to
lookup keys in tables and take corresponding actions, (ii.) uti-
lizing counters, meters, or registers, and (iii.) computing values
using Arithmetic Logic Units (ALUs). Each switch-ASIC has
limited hardware resources, which is the biggest challenge for
offloading novel network functions into programmable targets
as described in most existing works [161, 162, 163, 164]. Note
that the integrated circuits of these devices contain billions of
transistors, and that they are often limited by power and die
size constraints. In fact, what is considered limited resources
for ML is “just the right fit” for packet switching.

2) SmartNIC: A SmartNIC is an advanced type of a net-
work interface card (NIC) that integrates processing capabili-
ties, enabling the acceleration of network operations. NICs act
as a connector between the network and the host, with incom-
ing network traffic from the ports being sent to the CPU over
PCI-Express (PCIe) bus. However, there is often a mismatch
between the incoming network bandwidth, PCIe throughput,
and CPU processing capacity. SmartNICs offload some of the
processing from the CPU to the NIC in order to overcome
this mismatch and free CPU cycles. SmartNICs are able to
handle data rates of hundreds of Gbps, for example 2 ports
of 100G. The main reference architecture for a programmable

5

NIC is PNA [154], as shown in Figure 7. It consists of the main
Parser, Pre Control, Main Control, and Main Deparser. Externs
(specialized objects such as counters, meters, and registers)
are included and can be used in the pipeline. SmartNICs
tend to have more memory resources than a switch-ASIC, for
example leveraging an external DRAM. Example SmartNIC
targets include AMD Pensando [3], NVIDIA BlueField [4],
and Netronome NFP [6].

N
et

w
or

k
Po

rts

M
es

sa
ge

Pr
oc

es
sin

g

H
os

t (
PC

Ie
)

Host-to-net
inline extern

Net-to-host
inline extern

P4 Programmable FROM_NET FROM_HOST

Pre Control

Main Control

Main Deparser

Main Parser

TO_NET TO_HOST

Fig. 7. Programmable NIC Architecture (PNA) version 0.5.

3) FPGA: FPGA is a configurable integrated circuit that
can be programmed to perform specific functions by loading a
binary programming file, providing flexibility and reconfigura-
bility for implementing custom hardware designs. FPGAs were
early demonstration targets for P4-based network devices, with
works such as P4FPGA [165]. Other example targets include
NetFPGA [166] running P4→NetFPGA [7] and AMD Alveo
running OpenNIC [167]. Both are based on existing FPGA
boards and provide a framework able to compile P4 programs
into a dedicated packet-processing module. FPGA-based pro-
grammable network devices reach data rates of hundreds of
Gbps, lower than high-end switch-ASIC but higher than CPU-
based targets. FPGA targets also allow users to design their
own P4 architecture. For example P4→NetFPGA [7] uses
the SimpleSumeSwitch architecture, which uses only a single
pipeline, without separation to Ingress and Egress, while the
traffic manager (called Output Queues module) is located after
the P4 pipeline.

4) Software Switch: A software switch is a network switch
running as an application on a CPU. Software switches are
often considered virtual switches, and are implemented using
SDN principles, separating the control plane and data plane
functions. Software switches run on standard CPUs, with
switches supporting both x86 and ARM architectures, and
don’t require specialized hardware. To overcome performance
barriers of CPUs, kernel bypass is often used. For example,
T4P4S compiles a P4 program using v1model architecture and
loads it to a Network Hardware Abstraction Layer (NetHAL)
API [168]. T4P4S loads the compiled program to a data plane
that is accelerated by DPDK (or ODP). Similarly, the popular
Open vSwitch (OVS) is able to compile P4 programs with
PSA architecture to software targets like PSA-eBPF and P4
DPDK [169]. To explore P4 functionality, the P4 behavioral
model, BMv2 is widely used. It supports v1model and PSA
architectures. A hybrid target is P4Pi [170], which runs P4 on
a Raspberry Pi. While P4Pi supports both T4P4S and BMv2,
it also provides a low-cost hardware target that can be used
for education and research. Software switches typically have
lower performance than hardware targets.

D. Control Plane

Control plane manages the runtime behavior of P4 targets
via an Application Programming Interface (API). The API is
supported by a device driver or an equivalent software compo-
nent. P4Runtime [171] is a common control plane specification
that makes it possible to control or configure the data plane
of a device running a P4 program. Figure 8 illustrates the
main control plane operations. It facilitates runtime control of
P4 entities (e.g., M/A tables, counters, meters), for example
by adding and removing table entries. There is typically also
a packet I/O mechanism for streaming packets to/from the
control plane. Reconfiguration mechanisms allow the loading
of P4 programs onto the target’s data plane.

Control Plane

P4 Architecture

Data Plane

P4 Program Runtime Control

Tables Externs

CPU port
Load

Compiled P4 Program

P4 Compiler

Add/remove
Pkt in/out

Control

User
Supplied

Vendor
Supplied

Fig. 8. Control Plane and Data Plane Interaction [171].

E. In-Network Computing

In-network computing refers to the offloading of programs
or computation tasks to network devices, for example, pro-
grammable switches or SmartNICs. In-network computing
takes advantage of network devices’ high processing speeds
and low overheads in physical space, energy, and cost, as they
are already part of network infrastructure [10]. Realization
of in-network computing allows networks to become part of
available computing resources. It provides better integration
of communication and computing resources when diverse
application requirements need to be addressed [172]. Microsoft
Azure highlighted the potential of in-network computing for
telecommunication workloads [173], as it can efficiently pro-
cess massive volumes of traffic directly within the network
infrastructure. Their analysis identified cost efficiency, scal-
ability and increased functionality compared with existing
solutions. In response to what Microsoft identified as the main
challenge for in-network computing, resource constraints, they
have developed a resource elasticity solution [174].

In-network computing is implemented on any of the targets
described in the previous section. It can be applied in various
areas (e.g., caching, measurements, network services, and dis-
tributed systems). For example, NetCache [175] uses Switch
ASIC to detect, index, cache, and serve hot key-value items in
the data plane, providing significant throughput increase and
latency reduction. P4xos [176] offloads a consensus protocol
(Paxos) on programmable network devices (e.g., Switch ASIC,
FPGA, and DPDK) and can effectively remove consensus
as a bottleneck for distributed applications in data centers.
NetChain [177] uses switch-ASIC to store data and process

6

TABLE II
SUMMARY OF NETWORK-ASSISTED ML ALGORITHMS. THE ALGORITHMS IN THE TOP PART OF THE TABLE FOCUS ON EXTRACTING INFORMATION IN
THE DATA PLANE, TO ASSIST THE CLASSIFICATION EXECUTED ON THE END-HOST. THE ALGORITHMS IN THE BOTTOM PART OF THE TABLE FOCUS ON

ACCELERATING HOST-BASED ML TRAINING PROCESS THROUGH IN-NETWORK AGGREGATION.

Scheme Category Algorithm Language Platform ML Location1

SINET [178] Defense Eavesdropping Attacks Bayesian P4 BMv2 Server (Controller)

FastFE [179] Traffic Analysis NN (Kitsune) P4 Tofino Server (Controller)

FlowLens [180] Flow Classification Multinomial NB, XGB, RF P4 Tofino Switch CPU

DPRO [181] Routing Optimization NN (RL) P4 BMv2 Server (Controller)

ML-Pushback [182] Defense Against DDoS DT, Deep Learning — — Server (Controller)

iSwitch [183] In-Network Aggregation Distributed RL — NetFPGA-SUME —

SwitchAgg [184] In-Network Aggregation — P4 NetFPGA and BMv2 —

SwitchML [185] In-Network Aggregation — P4 Tofino —

ATP [186] In-Network Aggregation Distributed DNN training P4 Tofino —

DAIET [9] Data Aggregation — P4 BMv2 —

1 The location of ML inference process.

queries in-band (within the data plane), which provides scale-
free sub-RTT coordination in data centers.

IV. NETWORK-ASSISTED MACHINE LEARNING

The successful introduction of in-network computing has
led to attempts to apply in-network computing to ML ap-
plications. One type of effort focuses on accelerating ML
frameworks using the network, while the frameworks are still
deployed on CPUs and standard accelerators. We refer to these
as Network-Assisted ML. The second type of effort focuses
on offloading the actual ML operation, e.g., classification
decision, to the network. We refer to these as In-Network ML.

This section mainly focuses on network-assisted ML, which
has two main use cases: feature extraction and weight aggre-
gation, as summarized in Table II.

Feature extraction. Due to the flexibility of programmable
network devices and their potential for wide distribution on
targeted networks, features can be extracted efficiently by
these devices according to different use-case requirements
and controllers’ needs [187]. After extraction, they are sent
to a controller or a defined ML server continuously for
further processing. Features can vary from mean and standard
values [179] of packet size to website fingerprinting [180].
Since they are extracted from inner networks, they are more
representative and can provide more information and insights
for ML use cases, compared to the features collected from the
edge.

Weight aggregation. ML training can often be time-
consuming. With the introduction of more powerful hardware
accelerators, the bottleneck of ML training in data centers
lies more in communication (weight aggregation from multiple
different workers) compared to the training process, which can
even cost around half of the whole training time. Conduct-
ing gradient aggregation on a switch (e.g. SwitchML [185],
ATP [186]) instead of a specific aggregation server can reduce
the communication overhead and thus speed up the training
process.

V. DEVELOPMENT TIMELINE OF IN-NETWORK MACHINE
LEARNING

Although in-network computing assists in the implemen-
tation of ML, in-network ML is different from network-
assisted ML. Instead of deploying ML models on servers like
network-assisted ML, in-network ML deploys them on the
programmable data plane and mainly focuses on the inference
process.

IIsy [188] highlighted three benefits of in-network ML:
location, latency and load. Location, as network devices are
already deployed within the network and any data for infer-
ence must go through the network. Latency, as in-network
ML eliminates the latency introduced by CPU or GPU, and
supports microsecond-scale inference decisions. Load, as any
inference done on network devices saves processing cycles on
a backend and can terminate traffic earlier, thereby reducing
the volume of traffic deeper in the network.

Since 2017, researchers have tried to deploy ML algorithms
directly in programmable network devices for classification.
The work to date on in-network ML can be divided into
four groups: 1) DT based models and tree-based ensemble
models, 2) binary neural networks (BNN) based NN models,
3) RL models, and 4) other ML models. All in-network
ML works are listed in Table III, and their development
timeline is shown in Figure 9. There are three points worth
highlighting: 1. The number of publications in this area has
more than tripled since 2018. 2. Works in recent years tend
to involve multiple ML models rather than a single model. 3.
Several works went beyond model design and focused more
on framework development (e.g., Planter [161], DINC [189],
and Homunculus [190]).

While this section presents up-to-date works on in-network
ML in terms of different types of ML models, sketching
the skeleton of the in-network ML development timeline, the
implementation of in-network ML solutions is illustrated in
the next section in detail.

7

TABLE III
SUMMARY OF IN-NETWORK ML ALGORITHMS.

Scheme Category Algorithm Language Platform ML location1

N2Net [191] Packet Classification BNN P4 RMT-like Switch Pipeline Data Plane

BaNaNa Split [15] Classification BNN P4 SmartNIC Data Plane

toNIC [192] Data Classification BNN P4 Netronome SmartNIC Data Plane

IIsy [16, 188] Data/Packet/Flow Classification DT, RF, XGB, KM, P4 NetFPGA-SUME, Data Plane
SVM, and NB Tofino, BMv2

pForest [193] Packet/Flow Classification RF P4 Tofino Data Plane

SwitchTree [194] Packet/Flow Classification RF P4 BMv2 Data Plane

Taurus [195, 196] Packet/Flow Classification M-RA2: DNN, SVM, KM, P4 Modified ASIC Data Plane
and LSTM

Qiaofeng et al. [197] Packet/Flow Classification BNN (Federated learning) P4/C Netronome SmartNIC, Data Plane
and BMv2

N3IC [198, 199] Data/Packet/Flow Classification BNN P4 Netronome SmartNIC, Data Plane
P4 NetFPGA, BMv2

BACKORDERS [200] Packet/Flow Classification RF P4 BMv2 Data Plane

Planter [161, 201] Data/Packet/Flow Classification ET, SVM, NB, KM, P4 Tofino, Tofino2, BMv2, Data Plane
KNN, PCA, AE, and BNN P4Pi

Bruno et al. [202] Packet/Flow Classification RF P4 Netronome SmartNIC, Data Plane
and BMv2

IOI [203] Classification NN P4 Modified ASIC Data Plane

Clustreams [204] Classification k-NN Clustering P4 Spectrum-3 switch Data Plane

NetPixel [205, 206] Image Classification DT, CNN P4 BMv2 Data Plane

pHeavy [17] Flow Classification DT P4 BMv2, Tofino Data Plane

OPaL [207, 208] Control Temporal-difference RL P4 Netronome SmartNIC Data Plane
algorithms (SARSA)

QCMP [209] Load Balancing/Control Q-Learning P4 Tofino, BMv2 Data Plane

Paolucci et al. [210] DDoS Attack Detection NN P4 BMv2 Data Plane

INC [211] Bot Detection, Botnet Inference DT P4 Tofino Data Plane

Linnet [212] Financial Prediction NB, DT, RF, XGB P4 BMv2 Data Plane

LOBIN [213] Financial Prediction KM, KNN, DT, RF, XGB P4 BMv2, Tofino, Tofino2 Data Plane

P4Pir [214, 215, 216] Runtime Model Update DT, RF P4 P4Pi Data Plane

FLIP4 [217] Runtime Model Update Federated XGB P4 P4Pi Data Plane

MAP4 [218] Packet/Flow Classification DT, RF P4 Netronome Data Plane

Homunculus [190] Parameter Tuning DT, KM, SVM, and NN P4 Modified ASIC Data Plane

Mousika [219] Data Classification & Prediction DT P4 Tofino Data Plane

Mousikav2 [220] Data Classification & Prediction DT P4 Tofino Data Plane

Flowrest [221] Flow Classification RF P4 Tofino Data Plane

Ganesan et al. [222] Packet Classification DT P4 BMv2 Data Plane

DINC [189] Distributed Deployment NB, SVM, DT, RF, XGB P4 BMv2, Tofino Data Plane

1 The location of ML inference process.
2 Map-Reduce Abstraction.

A. Tree-Based Ensemble Models

Deploying DT and tree-based ensemble models on pro-
grammable network devices was first proposed in 2019 [16,
193]. There are two main approaches, which are depth-based
approach and encode-based approach.

The depth-based approach was proposed by pForest [193],
and it encodes random forest (RF) into BMv2 and Intel
Tofino in a hierarchical manner by using a match-action stage
for each level in the tree. Evaluation of flow classification
use case shows that the encoded data plane model can do
inference at the line rate. This work also proposed an it-

erative training process to optimize tree models and used
features. A similar work named SwitchTree [194] uses the
same strategy to encode RF to BMv2. This work realizes in-
network RF with a more complex feature extraction ability
based on the UNSW dataset [223]. This method was then used
in BACKORDERS [200] to do distributed denial-of-service
(DDoS) attack detection on CICIDS2017 dataset. Compared
to three previous works, Bruno et al [202], pHeavy [17], and
MAP4 [218] use a more direct method with only if() and
else() operations. Specifically, MAP4 argued not to choose
other popular ML models. It encodes a simple and reasonably

8

Planter

N2Net

IIsy

Year 2019Year 2018 Year 2021Year 2020 DT basedNN based RL based

Others DT + others

Year 2022

toNIC

pForest arxiv

Taurus arxiv N3IC arxiv

Qiapfeng et al. Bruno et al.Clustreams

pHeavyNetPixel IIsy Extended

Taurus

N3IC

Homunculus

INC

BACKORDERS

Paolucci et al.

OPaL

IOI

SwitchTree

Dependency

Banana Split

M4P4 Mousika

NN + others

QCMP

Year 2023

Flowrest

Mousikav2Ganesan et al.

P4Pir

Planter Extended LinnetP4Pir LOBINFLIP4 DINC

Fig. 9. Development History of In-network Machine Learning. All works can be found in Table III.

accurate DT model into a NIC and evaluates the encoded DT
model by using intrusion detection and IoT classification use
cases.

The encode-based approach is proposed by IIsy [16, 188]
and Planter [161, 201]. This solution encodes each feature and
uses an additional code-label table for the DT model, and it
was tested on BMv2, Tofino, and FPGA. Planter extends the
work from basic tree models to ensemble models, including
RF, XGBoost (XGB), and isolation forest (IF), and it was
tested by using anomaly detection on Tofino [201]. Planter also
provides an automated in-network ML mapping framework for
easy deployment of in-network ML algorithms. This mapping
method has been applied by INC [211] and Flowrest [221]
for bot detection and botnet inference. Based on Planter’s
framework, Linnet [212] applied this method to conduct future
stock price movement prediction on a software switch and
LOBIN [213] realized the similar functionality on resource-
constrained commodity hardware switches. In an IoT use case,
P4Pir [214, 215, 216] and FLIP4 [217] focused on tree models
under Planter’s mapping solution and explores how to do
runtime model updates. FLIP4 [217] further combined the
model to federated learning with diffusion noise to enable
lightweight in-network ML deployment on the IoT edge
while maintaining source data privacy. Homunculus [190],
a parameter tuning framework that finds optimal data plane
model parameters, also applied this method by using IIsy as
a plugin. Other than IIsy’s solution, encode-based DT can
be simplified to only a decision table, which uses feature
values as the input instead of mapping features into codes
as the input. NetPixel applied this simplified encode-based
DT algorithm to do image classification based on the BMv2
software switch [206] with the help of novel in-network image
feature extraction techniques. pHeavy, Mousika, Mousikav2,
and Ganesan et al. also mentioned this simplified method,
by only using a decision table with range match, Longest
Prefix Match (LPM), or ternary match, in their flow detection
mechanism [17, 219, 220, 222]. Mousika focuses more on how
to train a DT that best suits the data plane. It uses knowledge
distillation to train binary DT, it then uses a similar method
to map the tree by using ternary match.

B. BNN Based Models

Binary neural network (BNN) is a type of ML model
first proposed in 2015 [224] and extended in the subsequent
work [225]. It uses bit operations (XNOR and PopCount)
to perform binary matrix multiplication efficiently and can

provide a theoretical basis for deploying NN models in pro-
grammable network devices. XNOR-Net further develops the
feed forward process of BNN and offers a concrete mathemat-
ical proof from weight binarization to input binarization [226].
N2Net provided a solution to implement the forward path
of the BNN on a modern switching chip [191], proving the
feasibility of mapping, providing an approach to leveraging the
device parallelism, and offering a compiler to automatically
generate the switching chip’s configuration. However, this
work did not discuss the deployment performance on com-
modity programmable network devices (though implemented
on RMT [151]) and encountered the limitation of model size.
The derivative work, Banana Split, extended the target devices
of BNN from programmable switches in N2Net to SmartNICs,
and proved that computing in programmable network devices
can benefit end-host applications. When processing binarized
NN models, Banana Split partitions the CNN, leverages the
NN’s layered-structure to be partly processed in the network,
and explores when programmable network devices should
be used as the co-processor of CPU [15]. Developed based
on these efforts, toNIC realized binarized fully connected
layers (the layers that connect each neuron to every neuron
in the previous layer, facilitating comprehensive information
exchange) on commodity SmartNICs, aiming at improving the
efficiency and throughput of NN inference [192]. The result
shows that the processing throughput can be improved by
a factor of 10 with only a small NIC’s resource overhead.
However, the solution proposed in this work cannot function
without servers and did not cover detailed evaluation in terms
of throughput. The following work, N3IC, further proved that
NN can be deployed on commercial programmable NICs to
solve inference tasks which can reduce the cost of inference
tasks required by packet monitoring applications. It imple-
ments the design on two different hardware NICs by using
micro C and P4, and evaluates the design through three use
cases e.g. traffic classification, anomaly detection, and net-
work tomography. The result shows a 100x lower processing
latency and 1.5x increase in throughput compared to CPU
solutions. Similarly, Qiafeng et al. combined in-network BNN
with federate learning to provide security service to multi-
party edge device owners [197]. Evaluation results on two
anomaly detection datasets show a multi-fold improvement
in latency and communication overheads compared to other
learning architectures without the help of in-network ML.
By using a similar idea, NetPixel distributedly implements
CNN on multiple software switches based on BMv2 and uses

9

the generated model for image classification [205]. Based on
previous research, Paolucci et al. [210] show a demo of NN
on a software switch.

Instead of using existing network devices, Taurus [196]
and Homunculus [190] added a custom hardware module to
programmable network switches [195]. The added hardware
can be based on a map-reduce abstraction introduced by Tau-
rus using pipelined and SIMD parallelism for fast inference.
It helps to realize several ML algorithms other than BNN
and gains a processing speed that is three times faster than
a server-based control plane. Similarly, IOI realized NN on
programmable switches with the help of a plug-in transceiver
module [203]. The module is designed specifically to perform
non-linear operations such as matrix multiplication and non-
linear activation.

In summary, there are two main technical approaches for
realizing NN in programmable network devices. One is to
use only the existing programmable network devices while
the other is to add new modules to realize more difficult
operations, such as matrix production and nonlinear operation,
which requires area and power overheads.

C. Reinforcement Learning Models

Reinforcement learning (RL), as a key tool to online con-
trol systems in data-driven networks, was implemented on
programmable network devices by a work named OPaL in
2021 [207, 208]. OPaL realized one-step temporal difference
ML algorithm (e.g. SARSA) on Netronome SmartNIC. By
using quantize fixed-point representations for values of ac-
tions and Tile-coding (a sparse-coding method for real-valued
data [227]) based on microengines (MEs, a type of P4 extern
plugin), the OPal can achieve significantly lower latency (more
than 10 times lower) and throughput (around 3 times larger)
compared to offline implementations. Different from OPaL,
QCMP in 2023 [209] introduced two different approaches
for in-network Q-learning implementation that do not rely on
externs. The first method fully deployed the model inside the
data plane, while the second solution employs the control plane
to update the Q-table. QCMP’s evaluation primarily focuses
on the second approach, using traffic load balancing as a use
case, and running on Tofino. Generally, there was so far limited
research into in-band RL, which is a new research area in in-
network ML and calls for further contributions.

D. Other ML Models

Several traditional ML algorithms, including SVM, NB,
K-means (KM), and Principal Component Analysis (PCA)
were implemented by IIsy [16, 188] and Planter [161]. To
avoid complex operations, intermediate results of calculation
are stored in M/A tables after training. IIsy made trade-offs
between accuracy and feasibility, so as to realize the imple-
mentation of traditional ML models with complex operations
on programmable network devices. In IIsy, more accurate
algorithm implementation and less computation in network
devices mean more memory consumption needed on network
devices and more complex calculations needed for M/A table
generation. IIsy’s following work, Planter [161], generalized

SVM, NB, KM, AE, and PCA as the Lookup Based Solution,
and provided a general and modular workflow for similar
models. All models supported by IIsy and Planter are able to
run with a full line rate (6.4Tbps) and the same level of latency
as an L2/L3 reference switch. Linnet [212] and LOBIN [213],
by applying Planter, used NB, DT, RF, and XGB for future
stock price prediction. Taurus [195] can also realize algorithms
such as SVM and KM by using customized hardware based
on map-reduce abstraction on programmable network devices.
Its extension work Homunculus [196] did auto parameter
tuning for embedded IIsy models as a plugin and also natively
supports models in Taurus. Different from the previous three
works, Clustreams [204] realized centroid-based clustering
algorithms (e.g. KM) on programmable switches (Spectrum-3
Switch) by applying the combined quadtree [228] and ternary
match-action tables (TCAM). Clustreams used quadtree to
recursively divide the workspace and assign each workspace
with a cluster where TCAM allows parallel searching of all
quadrants during the inference process. The experiment result
shows that Clustreams has a small overhead on the network
latency and the switch throughput. The hybrid solution in
Clustreams also contributes to reducing power consumption.

E. Deployment Scenarios

In-network ML can be used in different deployment sce-
narios, such as data center networks [188, 196], wide area
networks (WAN) [201] and edge computing [214, 217]. Many
of the works focus on the technology, yet it is natural to expect
that DDoS mitigation will be deployed in WAN (dropping
traffic close to the source), while latency sensitive use cases
will be deployed at the data center or the edge (where
computation time dominates over propagation time).

Four different in-network ML deployment types are identi-
fied in [188]: native switch, endpoint accelerator, SmartNIC,
and a hybrid deployment.

A native switch is the most common type of deployment,
where a network switch is running in-network ML in parallel
with its traditional networking functionality, such as packet
forwarding and traffic management. This type of deployment
is beneficial as the switch is already deployed, thus there is
no additional cost or space requirement, and inference can
happen as traffic passes through the network. The disadvantage
of such deployments is that the co-location with networking
functionality leaves fewer resources for in-network ML.

A programmable network devices can also act as a “pure”
endpoint accelerator, where a dedicated network platform is
used for the sole purpose of in-network ML. This concept is
similar to traditional accelerators, such as GPUs, except that
the network platform is network-attached rather than residing
on a PCIe bus. While this deployment allows all the device’s
resources to be used for in-network ML, it adds cost, power,
and space overheads. An endpoint device also adds an extra
hop to the traffic compared with a native switch.

The deployment of in-network ML on SmartNICs, which
includes also DPUs, makes it possible to provide in-network
ML on incoming traffic to an end-host. This deployment
scenario is not very different from a native switch, as the

10

ML model is co-located with native NIC functionality, yet a
SmartNIC typically has more memory resources than a switch-
ASIC. Another difference is that a SmartNIC has an order of
magnitude (or more) lower throughput than a switch.

A hybrid deployment was suggested [188] as a means
to overcome model size constraints. It suggests deploying a
limited-size model on a network device (native switch, end-
point accelerator, or SmartNIC) and a large model at the
backend. When an inference decision on a network device
has low confidence, the message is forwarded to the backend
for inference using the large model. This approach enables the
processing of a large portion of traffic within the network, and
is especially useful for anomaly detection where most of the
traffic is classified as benign with high confidence and is not
sent to the backend.

F. Limitations

Researchers have attempted to effectively port ML models
to programmable network devices. However, these attempts
were preliminary and limited in practical application. Firstly,
the model accuracy in previous works was compromised
as the scalability of the solutions was limited and complex
features are hard to extract on hardware targets, leading to the
limitations of model size and complexity [16, 193]. While the
ML performance was good, it was often less than running
an equivalent inference task on a traditional ML platform.
Secondly, only a few types of ML algorithms were deployed
on network devices and were applied to limited tasks, meaning
that the current deployment scheme is hard to extend to
other use cases or motivate the deployment of other ML
algorithms. Thirdly, the early works did not explore how
the implementation of their in-network ML algorithms varies
between hardware targets. Finally, use cases were mostly
limited to networking applications.

Beyond general limitations, there are also specific limita-
tions to the implementation of specific ML models:

• DT and tree-based ensemble models: Although tree-
based models are considered the most mature in terms of
implementation at the data plane level compared to other
models, existing solutions have their limitations. The
depth-based approach [193, 194] exhibits poor scalability
on hardware targets and sensitivity to the number of input
features. When feasible, it can support a large number
of branches and leaf nodes while consuming a small
amount of memory, but the overall stage consumption
remains high. The encode-based approach [188, 201] can
accommodate a large number of features and trees, with
generally lower stage consumption. However, in scenarios
where tree depth is large, the number of branches and leaf
nodes increases, and can consume significant memory.
Additionally, the aggregation of individual tree results to
obtain a final output poses a challenge for tree models.
Memory/stage consumption becomes substantial when
dealing with a large number of possible output classes
or a large number of trees. These issues represent the
primary limitations hindering the realization of larger
tree-based models.

• BNN based models: While previous works present so-
lutions of implementing the forward path of BNN and
proved the feasibility of mapping, it was not shown that
these solutions fit on current commercial switch-ASIC
with acceptable performance and scalability [198]. Also,
some of the early works do not mention the performance
matrix of their solutions compared to other end-host
deployed ML benchmarks.

• Reinforcement learning models: Although some simple
value-based RL algorithms (one-step temporal difference
RL) can be implemented in the data plane, more complex
value-based RL solutions and policy-based RL solutions
are still missing. The current implementation takes ad-
vantage of microengines (MEs), the control plane, or a
software switch. Realizing it on commercial hardware
targets without use of externs or the control plane remains
an open question.

• Other ML models: Some researchers have proposed pre-
liminary general solutions and ideas for ML deployment,
but only 11 ML algorithms have been tried. Whether
more ML algorithms are feasible is still unknown, and
performance testing is not perfect yet. In addition, the
general relationship between the size of the ML model,
total resource consumption, and implementation accuracy,
is not well defined.

While there are many ML algorithms already mapped to
programmable network devices, there are still many questions
to be discussed in terms of model adaptability, model scala-
bility, deployment techniques, and deployment strategy. The
practical large-scale applications are restricted in these ways
and need to be further studied.

VI. IMPLEMENTATION OF IN-NETWORK MACHINE
LEARNING ALGORITHMS

This section presents the ML algorithms implemented so far
in the data plane. The section discusses how these ML algo-
rithms are realized, and how their authors overcame challenges
in their implementation. As the number of ML algorithms
mapped so far to the data plane is limited, this section also
suggests related ML algorithms that have the potential to
be mapped to programmable network devices using similar
techniques.

The choice which ML models to port to the data plane
isn’t based just on popularity or usefulness. It is largely driven
by the (limited) amount of resources required to support the
model within the network. Most of the models also exhibit a
linear complexity in their data plane implementation, enabling
them to operate at line rate. Only a few implementations, noted
below, use external logic or recirculation techniques, which
degrade throughput in favor of more functionality.

Figure 10 shows three classification methods of ML algo-
rithms, including learning paradigms, learning models, and
learning tasks. The bottom part of the figure illustrates the
ML algorithms that are discussed in this section and how
they are classified using learning paradigms. In this figure,
the algorithms with a red background have been implemented
in the data plane implementation already. The algorithms in
purple have not been implemented yet.

11

TABLE IV
THE SYMBOLIC PRESENTATION OF IN-NETWORK ML ALGORITHMS WITHIN MATCH-ACTION PIPELINE. logic REFERS TO ADDITION OPERATIONS AND

CONDITIONS. EACH ALGORITHM TARGETS AN INFERENCE TASK WITH n INPUT FEATURES AND k LABELS. EACH ALGORITHM VARIATION IS EXPLAINED
IN SECTION VI AND CAN BE COMPREHENDED IN CONJUNCTION WITH THE FIGURES AND EQUATIONS. THE BRACKETS INDICATE THE INDEX OF

DIFFERENT IMPLEMENTATION APPROACHES FOR THE SAME ALGORITHMS.

No Algorithm Symbolic Presentation

1 SVM (1) n× [key : xi; action : map(wi
1xi),map(wi

2xi), . . . ,map(wi
mxi)]→ logic

2 SVM (2) (k × (k − 1)/2)× [key : x1, x2, . . . xn; action : vote]→ logic

3 NN (1) Nlayers × (Xi = XNOR(x1 + +x2 + + . . . + +xnodes,Wi)→ xi = Count(Xi)→ xi = SIGN(xi), . . .)

4 DT (1) n× [key : xi; action : code]→ 1× [key : codes; action : y]

5 DT (2) Ndepth × [key : PreviousID,Direction; action : Find next level, Set class]

6 ET (1) n× [key : xi; action : codei]→ Ntree × [key : code1, . . . , coden; action : leaf]→ 1× [key : votes; action : y] or logic

7 ET (2) Ntree ×Ndepth × [key : PreviousID,Direction; action : Find next level, Set class]→ 1× [key : votes; action : y] or logic

8 NB (1) n× k × [key : xi, y;Action : P (xi|y)]→ logic

9 NB (2) k × [key : x1, x2, . . . xn;Action : P (x1, x2, . . . , xn|y)]→ logic

10 KM (1) n× k × [key : xi, y;Action : (xi − cji)
2]→ logic

11 KM (2) k × [key : x1, x2, . . . , xn;Action : Dj]→ logic

12 KM (3) n× [key : xi;Action : d1i , d
2
i , . . . , d

k
i]→ logic

13 KM (4) [key : x1, x2, . . . , xn, ;Action : y]1st hot if not hit→ . . . if not hit→ [key : x1, x2, . . . , xn, ;Action : y]kth hot

14 TD Learning (1) Input : Reward, State→ Extern(Predict action, Update policy)→ Outpout : State, Action

Machine Learning

Learning TasksLearning ModelsLearning Paradigms

Supervised

Regression

Classification

Logical

Geometric

Networked

Probabilistic

Dimension Reduction

…

SVM

Supervised Unsupervised Reinforcement

Neural Network

Decision Tree

Naïve Bayes

Ensemble Tree Models

k-Nearest Neighbor

SARSAK-means

Autoencoder

SOM

PCA

Isolation Forest

Implemented

Not Implemented

Legend

Unsupervised

Reinforcement

Semi-Supervised

Q-learning

Fig. 10. Categorization of ML algorithms – The upper part of the graph
includes three classification paradigms. The lower part of the graph generalizes
the ML algorithms noted in this survey under the first classification paradigm.

Table IV shows a symbolic presentation of in-network ML
algorithms. Some algorithms have multiple implementation
approaches. Each algorithm targets an inference task with n
input features and k labels. A detailed explanation of each
implementation approach is shown next in the breakdown
explanation of each algorithm.

A. Supervised Learning

Supervised learning, as a label-based learning method, is
capable of building a model to make decisions for future events
based on existing information (data) and annotated evaluations
(labels) [229]. Datasets are input for training and their labels
are used for supervising the model. The model is usually
trained with labeled datasets to describe the mapping of the
data space to the label space.

Supervised learning works in two phases, which are the
training phase and the inference phase. In-network supervised
learning offloads the inference phase in the data plane, and the
training phase usually remains in the control plane due to the
high operational complexity. It maps the trained model into a
format that fits the M/A pipeline. Thus, the mapped model can
label the data in the data plane based on the learned mapping.

Several supervised ML algorithms, including SVM, NN,
DT, Ensemble Trees (ET) (e.g. RF, XGB, IF), NB, and
k-Nearest Neighbor models will be further explained in this
section.

1) Support Vector Machine (SVM): SVM is one of the
typical classification algorithms, which performs well in solv-
ing nonlinear dataset problems and high dimensional pattern
recognition problems [139] with a small sample size. The
SVM model projects data into hyperspace and it aims at
finding hyperplanes to perfectly divide the data. Each hy-
perplane separates the data into two sub-classes and keeps
the data as far away from the hyperplane as possible. In
the linear non-separable problem, SVM applies the kernel
method to map data into high-dimensional feature space. For
different datasets, different mapping patterns are required. The
common kernel function includes linear, polynomial, Radial
Based Function (RBF) [230], etc [231].

12


w1

1x1 + w2
1x2 + . . . wn

1 xn + d1 = 0

w1
2x1 + w2

2x2 + . . . wn
2 xn + d2 = 0

. . .
w1

mx1 + w2
mx2 + . . . wn

mxn + dm = 0

(1)

For instance, Equation 1 shows how an SVM model is
constructed by the linear kernel for a k classification task with
n dimensional input data X = {x1, x2, . . . , xn} [232]. Each
line of the equation represents a hyperplane as the border
of two sub-classes. The model will generate m hyperplanes
where m = k(k − 1)/2. During the inference, SVM requires
the support of floating-point values and negative numbers,
multiplication operations, and comparison operations, which
needed to be redesigned to fit programmable network devices
with limited data types and limited mathematical operations.

To overcome the lack of floating point numbers, in-network
SVM maps the needed values to a predefined range and
approximates them to integers using floor, ceil, or round
operations [16, 233]. This method can tackle the challenge at
the price of accuracy. To support multiplication, the mapped
model uses M/A tables to store intermediate multiplication
results, with the keys to the lookup being the operands.

Classified by the amount of memory required to store
intermediate results, SVM has two mapping approaches [16,
161, 188], minimizing resource consumption on two different
vectors. The first approach uses smaller tables, as shown in
Table IV-1. This approach allocates a table to each feature. The
action data of each feature table is a collection of intermediate
results of the corresponding feature in the ith hyperplane
(map(wi

1xi), map(wi
2xi), . . . , map(wi

mxi)). The mapping
process here includes normalization, scaling, and data type
transformation. Before the final decision, the model collects
and adds all components to determine at which side of the
hyperplane each input data point is located. For every input
data X = {x1, x2, . . . , xn}, being assigned to any side of a
hyperplane means a vote for a specific class. The class with
the largest number of votes will be output for each input data.

The second approach requires fewer computation resources,
as shown in Table IV-2. This approach consumes k(k − 1)/2
tables that store the result of all calculations. Each table
determines the side (vote) of a hyperplane by using the set
of features as the key. The second approach consumes more
table entries compared to the first one but usually requires
fewer calculations within the pipelines or stages, which can be
useful when the range of feature values is narrow. To obtain
the final decision, both methods need to compare the number
of votes in each class. This can be done using either logic or
M/A tables to get the final label.

2) Neural Network (NN): NN is a mathematical model
which borrows the structure and function from biological neu-
ral networks [234]. The modern NN, as a statistical nonlinear
modeling tool, stacks simple classifiers that operate in parallel
to model the complex relationship between input and output
from historical data. NN can effectively explore the patterns
of data and extract complex input data features [235]. These
simple classifiers, such as perceptrons, as shown in Figure 11,
require floating-point input and weights to apply a list of math-

ematical operations such as multiplication, addition, activation
functions (nonlinear), etc., to get the output, which is the major
difficulties NN workflow faces for fitting in network devices
with the limited amount of memory, limited data types, and
limited mathematical operations.

… …

SUM !

"!
""

"#

…

#

$!

$"

$#

%

Step 1: Multiplication

Step 2: Summation

Step 3: Activation

Fig. 11. A fully connected NN constructed by many perceptrons.

The first constraint, limited memory, can be solved by
weight binarization. Binary inputs and weights can save up to
96% of the memory compared to using the floating-point [226]
and help to deal with the multiplication operation that is
not supported by several programmable network devices. The
second constraint, limited data types, can be solved by round
operation and binarization, which use integer or bit string to
store weights and inputs instead of floating-point numbers.
The third constraint, limited mathematical operations, can be
solved by using XNOR operation to replace multiplication as
a by-product of inputs and weights binarization and will be
further proved in Section VII-D4.

With binary inputs and weights, the three key steps in the
forwarding path of a perceptron in a neuron network are shown
in Table IV-3 and Figure 11, which will be replaced by Step
1 (XNOR operation), Step 2 (Hamming weight), and Step 3
(comparison), as well as meet the constraints of programmable
network devices [15, 191, 192, 197, 198].

While there are multiple types of Neural Networks, current
programmable network devices implementations on existing
devices include only Binary and Convolutional Neural Net-
works. More complex NN (e.g. DNN and LSTM) may become
feasible by modifying switch ASIC (e.g. with additional
MapReduce block [196]).

2.1. Binary Neural Network (BNN) is a type of artificial
neural network (ANN) with binary weights and activations
which facilitates the deployment of deep models on resource-
limited devices [236].

BNN workflow with the data plane is shown in Figure 12,
with arrows indicating data flow through the device. The
workflow starts by extracting selected features from headers of
incoming packets or local memory, such as meters, counters,
and registers [15, 191, 192, 197, 198]. Then, it concatenates
the features to bit strings as inputs. The weight of each neuron
in the n layer is saved in a register as a bit string, and is
read by the workflow. The device then executes an XNOR
operation (⊕ in Figure 12) between the weight and the input
bit string. The number of bits equal to one in each result will
be counted by adapting the Hamming weight algorithm, and
the model verifies if the number of bits equal to one is bigger
or equal to half the length of the weights’ bit string, as the
sign operation. The verified result, a single bit, is stored in
the least significant bit of the next layer’s input bit string.

13

#1

#2

#3

XNOR

XNOR

XNOR

XNOR

Count

Count

Count

Count SIGN

SIGN

SIGN

SIGN

XNOR

Count

SIGN '

(*345* (*5+

PHV PHV PHV PHV

Yes

Start

Extracted #6

) < +

,-./"57 += #6

"'.2

3/" = ,-./"58⊕(958

3/" = 53/-"(3/")

,-./"5(8;*) += 3/"

- < 8

, < 9

End

(958 = -2: (958

)++
) = 0 inference

Weight update

, = 0, - = 0No

-++
No

- = 0, i++
NoYes

Yes

Workflow of dataplane

#&#& #'#& #*#&

!$!%!&

#&#'

'

Start

End

Train model

Weight binarization

Workflow of control plane

Inference Packets & Normal Packets

Update
Packets

Count

SIGN

Count

SIGN

XNOR

Count

SIGN

XNOR XNOR

(*3=5* #* + +#+ + +#=

(*5+

XNOR

Count

SIGN

'

PHV

PHV

PHV

Fig. 12. Workflow of a typical BNN implementation within a programmable
network devices. The left side of the figure depicts the NN inference process
in the form of a flowchart, highlighting the specific operations required to
implement it in the data layer. The top right corner shows the process of
updating the network to the data plane. The right side of the figure displays
a graphical representation of the implemented process in the data plane. A
4-neuron toy example is shown in the bottom right corner. Specifically, this
network example requires three input features, three neurons in the middle
layer, and one neuron in the output layer.

The workflow iterates previous steps for each layer until the
last layer. There is a notation change as shown in Figure 12.
Different from Figure 11, the weights in each layer equal the
number of neurons in the next later. A simple toy example of
a basic element of the workflow is shown in the bottom right
corner of Figure 12.

The applied model and backpropagation method should
ensure that the NN’s weights are close to the range [-1, 1],
which helps reduce the loss of information when applying
the binarization technique. Benefiting from register-stored
weights, BNN can apply the online update without stopping
the device [197]. The trained binary weights will be packed
and transferred to target data plane devices and trigger the
weight update workflow.

2.2. Convolutional Neural Network (CNN) is a kind of
feedforward NN with convolutional layers and a deep
structure [237]. The convolutional operation enables
representation learning and shift-invariant classification
of input information according to its hierarchical structure.
Currently, the convolutional layer has no data plane
implementation, only the fully connected layer. The CNN
model needs to be split into two parts in order to be
accelerated on programmable network devices [198]. Take
typical convolutional network structures as an example, the
first part includes alternately stacked convolutional layers
and pooling layers with a large number of parameters that
need to be placed on local devices. In the second part,

the fully connected layer, with a lower parameter size,
can be converted to BNN and deployed into the network
devices. The overhead of the model splitting process has
been proved to be very little if the split is conducted carefully.

3) k-Nearest Neighbors (k-NN): k-NN is an intuitive
instance-based learning algorithm for supervised learning
[238, 239]. The k-NN model first finds k closest training
samples to the testing input in the feature space. Then, in
a classification task, the k-NN categorizes the testing samples
into the label with the largest number of closest training sam-
ples according to the majority voting rule, while calculating the
mean value of k nearest neighbors as the output in a regression
task.

y = argmax
cj

∑
x∗∈Nk

I (y∗ = cj) (2)

Equation 2 shows how k-NN is used for classification. In the
equation, indicator function I equals 1 when y == cj and
Nk is a set of x∗ (x∗ is the training sample with label y∗)
that is included in the k nearest neighbors. In the forward
process, the model calculates the distance of each stored
data point to the input data to specify the set of neighbors.
Generally, all the training datasets are stored in the model.
However, in programmable network devices, it is hard to
store such a large amount of data and find out which data
are included in neighbors due to the limited memory and
limited stages. Though it is difficult to realize this process
directly during runtime calculation, the boundary of each
output class can be calculated in advance and stored in a
M/A table. The implementation of KNN in the data plane
uses once again the value of features as the lookup keys of a
M/A table, with the output being the classification result. This
approach essentially performs a linear partitioning of the input
feature space, such that each partition of the feature space
is mapped to a class. The feature space slicing manner and
table realization are similar to Clustreams’ K-means solution
(shown in Figure 16) [161, 204], and more information is
provided in Section VI-B1, as the original source for this
methodology.

4) Decision Tree (DT): DT is one of the classical super-
vised learning algorithms, which can solve both classification
and regression problems [240]. DT model has a tree-like
structure that includes a root node, several internal nodes, and
several leaf nodes [241]. The leaf node corresponds to the
decision result, and the internal node (which can be named as
branch) corresponds to the decision rule. When entering the
DT, data starts from the root node, goes through the internal
nodes, and heads for the corresponding branch according to
the decision rules. Classification is completed when the data
reaches the leaves. The tree structure of the DT equips it
with a good application prospect in programmable network
devices, especially when the calculation logic of a simple
switch pipeline is similar to a tree structure [16]. During the
inference, the DT does the comparison at the node iteratively
to reach the next node or obtain the final output, which will
be the main difficulty in making the DT workflow suitable for
programmable network devices [16].

14

Table: Leaf

Table: Layer 1

Table: Layer 2

Table: Layer 3

Parser

M/A Stage

M/A Stage

M/A Stage

Deparser Decision

Feature Extraction

Port Assignment Port Assignment

(a) Depth Based

! 1 ! 2

M/A Stage

(b) Encode BasedPISA

Feature Extraction

Fig. 13. The difference in mapping a DT to a match-action pipeline [201]
between (a) Depth-based approach and (b) Encode-based approach.

There are two main DT mapping strategies to the data
plane: a depth-based approach and an encode-based approach.
i) Depth-based approach [193, 194, 202], as shown in
Figure 13 (a), hierarchically maps the tree model into the
M/A pipeline (as shown in Table IV-5, using Ndepth tables).
The model is executed within the pipeline layer by layer,
until reaching the leaf node. The model starts by extracting
the required features from incoming data. In each layer of the
DT, the model compares a feature’s value and a threshold.
The next layer uses the node ID and the comparison result
to extract the node information for the current layer. This
approach consumes little memory, as the number of nodes
in the tree is limited, but requires a lot more stages there is
a dependency between the tree’s depth and the number of
stages. A simple version of the depth-based approach uses if
and else statements instead of M/A tables, which is intuitive
but requires more lines of code [202] and does not save
stages.
ii) Encode-based approach [16, 161, 188, 201], as shown
in Figure 13 (b), breaks the hierarchical structure of the
tree model. It encodes each feature according to the split
value in each branch of the tree. Consequently, each branch
can be treated as the result of one-time slicing on feature
space. After slicing, each feature range is labeled with a
code. A code-to-leaf mapping (M/A table) is used to map the
combined codes of all features to the leaf node. This method
uses a relatively small number of stages because feature
tables have no dependency and can share stages (as shown
in Table IV-4, requiring n parallel feature tables and one
decision table). However, it usually requires more memory
to implement the map operation. A simplified version of the
encode-based approach uses only one leaf (decision) table
for classification. Instead of a mapped code, the table uses
feature values as input, and range-match is used for labeling
[17, 205, 206]. This solution can save stages but consumes
more table entries when the crafted tree model is complex,
potentially exceeding the amount of memory available on a
programmable network devices [161].

5) Ensemble Tree Models (ET): ET models construct a
more powerful classifier than a single DT model with the
help of several base DT models [242]. The combination of
base models can statistically and computationally benefit the
classification performance of the model. There are two main

Key：Previous ID, Direction
Action：Find_next_level, Set_class

Tree 1 Tree 2

0 1

0 1

2

!2 ≥ 2
!2 < 1
!2 ≥ 1

!1 < 1
!1 ≥ 1
!2 < 2

-
.
/

0
1
2

1 2 -.

/ 0

Sample Table per Depth per Tree

Branch 3
Branch 2
Branch 1

!2 !1

!2

Action：Find_next_level
Data: Current ID, F (Num), Threshold
Out: Previous ID (Current ID), Decision

Action：Set_class
Data: Class
Out: Class

Key: Branch 0, True
Action: Set_class
Data: 0

Key: Branch 0, True
Action: Find_next_level
Data: Branch 2, 2, 2

Key: Branch 0, False
Action: Set_class
Data: 1

Key: Branch 0, False
Action: Set_class
Data: 2

Tree 1 Level 1 Tree 2 Level 1

Key: Branch 2, True
Action: Set_class
Data: 0

Key: Branch 2, False
Action: Set_class
Data: 1

Tree 2 Level 2

if 34567(F) > Threshold:
Decision = 1

e5:7: Decision = 0
Previous ID = Current ID

meta.Result = Class

Find_next_level Set_class

Sample Ensemble Tree Model Tables & Actions in M/A Pipeline

Fig. 14. Workflow of a typical ET model (depth-based approach, also shown
in Table IV-6). The left bottom and top right sides of the figure show the
two types of M/A tables required for this mapping approach, namely Sample
Table per Depth per Tree (when the next node is still a branch) and Tables
& Actions in M/A Pipeline (when the next node is a leaf node). The bottom
right corner of the figure displays the mapping result of the example model
in the data plane, which is divided into two layers. The first layer consists of
one Sample Table per Depth per Tree (branch node f2) and three Tables &
Actions in M/A Pipeline tables (leaf nodes 0, 1, 2), while the second layer
consists of two Tables & Actions in M/A Pipeline tables (leaf nodes 0, 1).
A 2-tree toy example is shown in the top left corner. The example model
includes two input features, f1 and f2, and three possible outputs: 0, 1, and
2.

ensemble techniques: bagging and boosting. Within the data
plane, the main difference between these two techniques is in
the final stage logic used to assign the label [201]. Before the
final stage, the data plane implementation is very similar for
both types of ensemble tree models.

Similar to the mapping of a DT, the implementation of the
ensemble model uses the extended depth-based approach [193]
and the encode-based approach [161]. They are shown in
Table IV-6 and IV-7. The depth-based approach, as shown
in Figure 14, can share stages when executing different trees
at the same depth. For an Ntree trees ensemble model with
maximum depth Ndepth, up to Ntree ∗ Ndepth tables are
needed. Among them, M/A tables of the same layer’s depth
can share stages. The encode-based approach, as shown in
Figure 15, shares stages for every feature table and every
tree table. For a Ntree trees ensemble model constructed by
using n features, this approach requires n feature tables and
Ntree tree (code) tables, where each feature table can share
the same stage within the pipeline and tree tables can share the
other stage, meaning that only three logical stages are needed:
features lookup, tree-result lookup and label assignment.

5.1. Bagging: The bagging technique, also named bootstrap
aggregating [243], is a parallel learning sampling technique
that trains a series of independent, homogeneous models in
parallel, and uses the aggregate output of each model accord-
ing to some strategy. Different trees are trained on different
data. RF is one of the typical models generated by the Bagging
technique. In RF every tree model has the same importance.
In the classification problem, the base model (DT) votes to get
the final result. In the regression problem, the mean of base
models is the result. Implementation wise, both the depth-

15

Key：Previous ID, Direction
Action：Find_next_level, Set_class

Merge feature tables

) ++

Feature 1
0
1
2
…
n

+.,.
0
0
0

…
0

Branch 1
Code

00
01

Leaf
0
1

Feature 1 M/A Feature 2 M/A Tree 1 Tree 2
+.,/

0
1
1

…
1

+/,.
0
1
1

…
1

+/,/
0
0
1

…
1

Leaf
0
1
2

Code
00
01
1*

Feature
!1
!2

Splits
[Branch 1]
[Branch 2]

Paths
[[0, 0], [0, 1]]
[[0, 0], [2, n]]
[[1, n], [0, n]]

Leaf
0
1
2

-./
*0

Find feature splits Find path for leaf nodes

Generate feature tables Generate the code table
!1
0
1

…
n

'*(+
0
1

…
1

!2
0
1

…
n

Leaf
0
1
2

Code
00
01
1*

Feature 2
0
1
2

…
n

Branch 3
Branch 2

Tree 1

0 1

Branch 3
!2

Trained)01 tree model

Example ,!" input
Tree 2

'+(+
0
0

…
1

!2

0 1

2

Branch 2
Branch 1!1

) = 0
Start

Table 4: Tree 2

[[range of 21], [range of 22]]

5,6(: 8)- tree code 9

!1 < 1
!1 ≥ 1
!2 < 2
!2 ≥ 2
!2 < 1
!2 ≥ 1

-
.
/
0
1
2

1 2
-.

/ 0

Tree 1 Tree 2

0 1

0 1

2

!2 ≥ 2
!2 < 1
!2 ≥ 1

!1 < 1
!1 ≥ 1
!2 < 2

-
.
/

0
1
2

1 2 -.

/ 0

Sample Table per Depth per Tree

Branch 3
Branch 2
Branch 1

!2 !1

!2
Action：Find_next_level
Action Data: Current ID, Feature, Threshold
Out: Previous ID (Current ID), Decision

Action：Set_class
Action Data: class
Out: class

Key: Branch 0, True
Action: Set_class
Data: 0

Key: Branch 0, True
Action: Find_next_level
Data: Branch 2, 2, 2

Key: Branch 0, False
Action: Set_class
Data: 1

Key: Branch 0, False
Action: Set_class
Data: 2

Tree 1 Level 1 Tree 2 Level 1

Key: Branch 2, True
Action: Set_class
Data: 0

Key: Branch 2, False
Action: Set_class
Data: 1

Tree 2 Level 2

Stage 1 Stage 2

Stage 1 Stage 2

if) < *Write tablesEnd

Fig. 15. Workflow of a typical ET [201] (encode based approach, also shown
in Table IV-7). The flowchart in the figure demonstrates the specific process of
mapping the model to the data plane using the encode-based method, including
four main steps: finding feature splits, generating feature tables, finding paths
for leaf nodes, and generating the code table. The resulting tables are shown
at the bottom of the figure, including two Feature Tables, two Tree Tables,
and a Decision Table (or if-else logic) that is not displayed in the figure. A
2-tree toy example is shown in the top left corner. This is the same as the
tree model shown in Figure 14.

based approach and encode-based approach can be used to
realize RF. Each tree is implemented individually as in DT,
most efficiently by parallelizing different trees (as explained
above). In the final logic, the model can use either a M/A table
to map from votes to class or use logic to compare each class’
vote [201].

5.2. Boosting: Boosting is a serial learning sampling
technique, which samples data under the distribution based
on the learning results of the last iteration [244]. Each
subsequent tree is trained to estimate the errors of the
previous trees. To take XGBoost (XGB) [245] as an example
that currently has two ways to implement the model within
the network [161, 201]. In the first implementation method,
all trees add up all the probabilities that belong to a specific
class to form the overall prediction for that class. The final
probability can be calculated in a similar way to the vote
calculation in the bagging technique. This method could suffer
from an accuracy loss as floating-point numbers may not be
supported by the programmable network devices, therefore
the probability is approximated and mapped to a new integer
space. Another approach encodes the probabilities in each
tree [161] and then uses a table to map all the encoded
probabilities to the final label. This method is rigid and does
not exhibit accuracy loss.

6) Naı̈ve Bayes (NB): As a statistical classification method,
NB is the general term for algorithms based on Bayes’ theorem
[246] shown in Equation 3, which is one of the simple classical
Bayes models.

P (xi|y) =
P (y|xi)P (xi)

P (y)
(3)

Based on the posterior probability introduced by Bayes’
theorem, NB tests the probability of each set of inputs with
each label, under the assumption that each input feature is
independent. As shown in Equation 4, the label with the
highest probability is the prediction result.

ŷ = argmax
y

P (y)

n∏
i=1

P (xi | y) (4)

In general, calculating the conditional probability of a
certain class given a set of input features requires multiply-
ing all the conditional probabilities for each input feature
corresponding to a particular output class with the poste-
rior probability of the class, as shown in Equation 4. The
concatenated multiplication operation and the floating-point
values used in the equation make it hard to implement NB
on programmable network devices, where multiplication and
floating point numbers are not natively supported.

To implement NB in the data plane despite these two limita-
tions, a model mapping uses M/A tables and trades resources
for accuracy [16, 161, 188]. A Naı̈ve Bayes implementation
uses M/A tables to store probabilities and the results of
multiplying probabilities. For example, using input feature xi

and class y as a key to the table results in the value P (xi|y).
To handle the lack of floating point numbers, the results are
cast to integers (multiplied by 10n, the required accuracy) or
fixed-point numbers.

Two mapping approaches of NB use the above method-
ology [16]. The first approach, shown in Table IV-8, uses
nk (or n(k + 1)) M/A tables, one table for each conditional
probability. The lookup keys to each table are the value of a
feature, and the action is the conditional probability for a given
class (P (xi|y)). The probability of class y, P (y) is stored
either in a M/A table or in a register. Another option is to
hold P (y) as a constant in the P4 program. To multiply the
conditional probabilities of the different features, another table
can be used per label. The final classification uses conditions
to pick the high-probability label, though a M/A table can be
used for the same purpose.

An optimization to this approach was proposed in
Planter [161], using the log() operation to avoid multiplica-
tion [161], using addition instead in the decision stage.

The second approach shown in Table IV-9, moves the
burden of multiplication from the network devices to the
compilation stage [16]. This approach uses k M/A tables, one
for each class. The key to each table is the collection of all
input features, and the output action is the probability of a
given class. The probabilities of all classes are compared in
the last stage to determine the label. The calculation of all the
conditional probabilities is done in the compilation stage when
all possible values (quantized) are generated to populate the
tables. As a result, the tables generated by the second approach
tend to be significantly larger than in the first approach, but
the number of tables is smaller.

16

B. Unsupervised Learning
Unsupervised learning is another type of ML algorithm used

to explore hidden patterns in unlabeled data [229]. Also as a
statistical method, unsupervised learning algorithms can use
unmarked input data to explore data structures and patterns
automatically without explicit supervision.

In-network unsupervised learning algorithms transfer the
learned data structure into M/A pipeline and apply it to new
incoming data mainly for clustering or dimension reduction
tasks. In-network unsupervised learning does not learn in the
data plane but applies ML models trained by unsupervised
learning methods to the data plane.

Common unsupervised learning methods include KM,
Isolation Forest (IF), PCA, Self-Organizing Map (SOM), AE,
etc.

1) K-means: KM algorithm is an iterative method that aims
to divide the dataset into k clusters in which each observation
is assigned to the cluster with the nearest mean. The distances
between data points from the same cluster need to be as short
as possible while observations from different clusters are kept
as far as possible [247].

Di =

√(
x1 − ci1

)2
+
(
x2 − ci2

)2
+ .. (xn − cin)

2 (5)

Equation 5 shows how to calculate the distance between
each set of input to each cluster, where X = {x1, x2, . . . , xn}
is the input and Ci = {ci1, ci2, . . . , cin} is the centroids of clus-
ter i. The complex mathematical operations, including square
and square root, make it challenging to fit on programmable
network devices.

To overcome these difficulties, there are three similar imple-
mentation approaches, which can be classified by the overhead
of calculations and the number of table entries. The first
approach, as shown in Table IV-10, requires the most calcula-
tions and the smallest number of table entries [16, 161, 188]. In
the implementation of this solution, for each table, the input
key is the feature value and cluster-ID, and the action data
is the square distance of the feature to that cluster. In the
decision logic, the total distance is calculated by summation.
The cluster-ID with the closest distance (decided through
comparison) is the output class. Note that root square operation
is not required as the comparison is of squared distances. The
second approach requires the minimum computation and the
maximum number of table entries, as shown in Table IV-11,
where n M/A tables use the input features sets, x1, . . . xn, as
key, the distance to each label cluster as action data. The final
logic conducts comparison to determine the output label. The
main difference from the first approach is that the first ap-
proach is unidimensional while the second approach is multi-
dimensional per table. The third approach is a compromise
between the first two approaches. As shown in Table IV-
12, this approach uses n M/A tables. In each table, the key
is the feature value and the action data is a collection of
squared distances of that feature between each cluster (uni-
dimensional). The final logic is similar to the first approach.

As shown in Table IV-13, there is another different approach
for offloading centroid-based unsupervised learning algorithms

with the help of Quadtree (which applies Ternary match) [161,
204]. Before analyzing its detailed implementation, one needs
to understand the nature of this type of an algorithm. KM
and other centroid-based unsupervised learning methods do
classification based on the distances between the input data
point and each centroid, which means that boundaries dividing
each class can be found in feature space. This fourth method
iteratively divides the feature space into small pieces until
all the input values that lie in it belong to a specific class.
As shown in Figure 16, for a two-dimensional input toy
example, this method uses fine-grained squares to describe the
boundaries and uses coarse-grained squares to represent spaces
inside. How detailed it depicts boundaries depends on the
trade-off between accuracy and memory overhead. After the
feature space is well split, this method stores the information
of each piece in the TCAM table. There are two methods to
index the feature space. The first one, as shown in Figure 16,
uses consecutive codes to index (encode) each input feature
after assigning each block to a class. This method is intuitive.
Although Exact-to-TCAM is a classical network problem, it is
not easy to find the most suitable and efficient way to conduct
the transfer. In comparison, the second one uses the Quadtree
index purely, as shown in Clustreams’ work [204]. In this
method, the feature space is easier to be transferred to the
TCAM table but requires pre-processing before the packet is
sent to programmable network devices.

000 001 010 011 100 101 110 111

00
0

 0
01

 0
10

 0
11

 1
00

 1
01

 1
10

 1
11 Code 0

0
00*
010
1**
01*
1**
11*

CentroidCode 1
00*
010
011
011
100
101
101

Centroid 0

Centroid 1

Centroid 0’s vertices

Centroid 1’s vertices

Centroid 1&2’s vertices

Code 1

Code 0

Table: Find Cluster

000 001 010 011 100 101 110 111

00
0

 0
01

 0
10

 0
11

 1
00

 1
01

 1
10

 1
11 Code 0

0
00*
010
1**
01*
1**
11*

CentroidCode 1
00*
010
011
011
100
101
101

Centroid 0

Centroid 1

Centroid 0’s vertices

Centroid 1’s vertices

Centroid 1&2’s vertices

Code 1

Code 0

Table: Find Cluster

Fig. 16. Workflow of a centroid-based (K-means) unsupervised learning [204].

In many cases, the input is biased and not evenly distributed
in feature space, which creates some “hot zones”. For a higher
processing speed, the algorithm can split the previously large
TCAM table into multiple smaller ones according to how
hot the area is. If the input hits a “hot zone”, it will be
classified and the algorithm will skip the following TCAM
tables. Otherwise, the input will be moved to the next table
with the less hot area until it hits a table [204]. Note that
this approach is useful only on targets where stages in the
pipeline can be skipped.

2) Principal Component Analysis (PCA): PCA is a sta-
tistical method that is commonly utilized to reduce the di-
mensionality of large data sets while preserving most of the
data variation [248]. It computes the cumulative projection of
each component on each data point onto new components to

17

conduct dimension reduction. Planter [161] is the first work
that offloads this model into the data plane.

The forward process of the PCA algorithm requires matrix
multiplication and matrix division operation, which can be
interpreted as Y = WX . For the input with n original
dimensions, the new dimension yj can be calculated by
yj = w1

jx1 + w2
jx2 + . . . wn

j xn, {j ∈ Z | 1 ≤ j ≤ k},
where k is the total number of new dimensions. Under this
condition, Planter’s implementation uses M/A tables to store
the intermediate result of the multiplication operation on
programmable network devices with limited mathematical
operations, in a manner that is very similar to the SVM
solution (Section VI-A1). Specifically, for each input feature
xi, there will be a M/A table with input xi and output
w1xi, w2xi, . . . , wkxi, storing intermediate results. After all
intermediate results are extracted, pipeline logic performs
multiplication operations to calculate the value of new
dimensions y1, y2, . . . , yk. In this method, the resource
overhead is the function of the range and the number of
input features. When there are too many input features or the
range of features is wide, it would be hard to realize it on
programmable network devices with limited memory.

3) Self-Organizing Map (SOM): SOM is a special type of
unsupervised ANN model trained with a competitive learning
algorithm, which is intended for the purpose of dimensional-
ity reduction [249]. It typically generates a two-dimensional
representation from multidimensional inputs while conserving
the topological space in the meantime. A SOM forms a map
for the input distribution where samples are grouped based on
the similarity between one another. Multidimensional data can
be visualized and interpreted with this technique.

In a SOM, one or two-dimensional space is evenly filled
in by neurons before training, which means the number of
trained neurons is large. Thus, in the forward process, there
is a significant overhead of computation and comparison as
the model needs to compare the distance of input between
every two neurons. This makes it hard to implement a SOM
on programmable network devices with its limited resources
as the comparison operation has a high dependency and
potentially requires many stages. In general, the structure of
SOM looks a lot like NN, while an implemented functionality
will resemble PCA and Autoencoder. To the best of our
knowledge, the implementation of SOM in the data plane has
not been realized.

4) Autoencoder: Autoencoder is typically used to perform
the task of representation learning through data encoding and
decoding as a family of unsupervised ANN architectures [250].
By design, an autoencoder is capable of learning efficient
compression of a set of data to obtain a knowledge repre-
sentation of the original input, as well as subsequent recon-
struction based on the representation. In general, it discovers
the underlying structure of data and can be applied for various
purposes, such as dimensionality reduction, feature extraction,
image denoising, and anomaly detection.

Xnew = XW +Bias (6)

The autoencoder model usually has a funnel-like structure.
For different use cases, the depth of the encoder network
and the decoder network varies. The full-size autoencoder
is usually hard to be implemented due to limited stages
and mathematical operations. However, a model with only a
low number of hidden layers is potentially realizable [161].
Equation 6 shows the forward path of a one-layer autoencoder,
which shares the same logic as Equation 1 (WX + B = 0).
Its structure is very similar to PCA with similar limitations. In
the pipeline, biases represented as B are stored either within a
M/A table or a register. Following this, for each input feature,
a M/A table is utilized, taking the input xi and producing
a collection of intermediary outcomes w1xi, w2xi, . . . , wkxi

(where k denotes the number of encoded nodes). Subsequently,
while reading these intermediate results from the M/A tables,
simultaneous operations are conducted to compute values
ranging from y1 to yk.

5) Isolation Forest (IF): IF is an unsupervised learning
algorithm based on DTs and designed for anomaly detection
which is capable of identifying anomalies rather than nor-
mal observations [251]. IF isolates the outliers by randomly
selecting features and randomly sub-sampling data. In trees,
the data points with shorter paths have a higher probability
of being anomalies as they are easier to be separated. The
general method for offloading IF to programmable network
devices [161, 188, 201] is very similar to tree-based ensemble
models (Section VI-A5) and both depth-based and encode-
based approaches can be used to realize the IF. The operational
mechanism inherent to this model is predicated on the prin-
ciple that a node of greater depth signifies a correspondingly
diminished probability of being classified as an anomaly. The
main difference between IF and previous RF implementations
resides in the outcome of the table that represents leaf nodes.
In IF, instead of the tree’s vote, the table’s output value is the
depth of the leaf node. Subsequently, the final decision table
or logic is based on the aggregation of these values across
all trees to output the label. Given that trees in IF usually
exhibit substantial depths and a high number of leaf nodes,
quantization can be employed to constrain the depth values
of these leaf nodes. This serves to delimit decision table size
and thereby avoid entry explosion. Trimming all the nodes
above a threshold can save the data plane resources. Still,
it is still hard to conduct resource control for in-network IF
for two reasons: 1) IF usually trains the models without any
constraints, which makes the trained model itself complex. 2)
IF counts the number of branches it passes along the route. As
a result, the number of possible values on leaf nodes is large,
making the decision table large.

C. Semi-Supervised Learning

Semi-supervised learning is an approach situated between
unsupervised learning and supervised learning. It refers to
solutions for the training cases with only a small portion of
labeled data and a large amount of unlabeled data [252]. In
general, semi-supervised learning algorithms are needed when
the collection of labeled data is time-consuming and labor-
intensive.

18

Semi-supervised learning algorithms can be divided into
self-training, graph-based semi-supervised learning, semi-
supervised SVM, etc. To date, no in-network computing work
has explored this learning paradigm.

Semi-supervised learning takes advantage of training with
a low portion of labeled data and may use the aforemen-
tioned offloading techniques to deploy the trained algorithm
to programmable network devices. Generally, semi-supervised
learning is a key concept in the training phase, which can
greatly help in-network ML algorithms to train in the case
of large data volume. Semi-supervised learning is stable with
high efficiency, but sometimes it suffers from low accuracy.

D. Reinforcement Learning (RL)

RL constructs a strategy with the purpose of controlling
agents to maximize the expectation of cumulative rewards.
The RL strategy is learned from the interaction between
agents and the environment. This type of an algorithm is
inspired by the behaviorism theory. In psychology, this theory
explains how organisms gradually form the most rewarding
habitual behaviors under stimulation or punishments from the
environment [253].

RL can be divided into value-based, policy-based, and
actor-critic. Two traditional and common value-based RL
algorithms were the focus of in-network ML research: Q-
learning and SARSA. OPaL [208] focused on implementing
them in the data plane, as explained next. More advanced RL
algorithms, such as Deep Q-Networks (DQN) [254] and Deep
Deterministic Policy Gradient (DDPG) [255], take advantage
of the capabilities of deep neural networks (DNN) to address
complex problems involving a large action space. However,
despite attempts to implement DNNs within the network in
N3IC [199], the immense complexity of these networks, and
therefore high resource consumption, has thus limited the
success of deploying deep RL within the data plane so far.

1) SARSA: SARSA is an on-policy RL algorithm and
learns the value of the policy executed by the agent [144].
There are two essential but complex operations in this al-
gorithm: ε-greedy and updating a Q-table. For ε-greedy, the
challenges are realizing the greedy policy and randomly se-
lecting the action within the data plane, as these either require
externs or significant resources (e.g., many stages). In a Q-
table, as shown in Equation 7, the equation requires three
multiplication operations, and the second half of the equation
has a dependency, making it hard to fit on programmable
network devices with limited stages. Meanwhile, for a value-
based method, defining the value (reward) of each action
is tricky, particularly when it comes to balancing trade-offs
between memory and accuracy, as the intermediate results
stored in the M/A table should be optimized to minimize
accuracy loss.

Q(S,A)← (1− α)Q(S,A) + α [R(S, a) + γQ (S′, a′)] (7)

While it is challenging to implement SARSA on some pro-
grammable ASIC, targets such as Netronome SmartNIC (Ag-
ilio LX) [207] enable it through externs. The Agilio LX

architecture is different from the architecture of e.g., Intel
Tofino, used in many previous works. As a SmartNIC, it
supports more functions but has a lower data rate compared to
switches. Agilio LX has programmable MEs (microengines),
and packet processing throughput is increased through MEs
parallelism. This paper takes SARSA as an example of one-
step temporal-difference (TD) RL, as shown in Figure 17
(Table IV-14 also shows the generalized workflow of TD
learning). During ingress or egress processing, the environ-
ment reward and current state information are extracted and
provided to an extern for in-band RL [207, 208]. Such extern
implements the RL cores using multiple MEs inside and the
storage component constructed by different types of memory.
The input information first does a Q-table lookup for the value
of action by using Tile Coding. This coding method adds up
all the coarse-grained tiles to represent one fine-grained Q-
table. Each coarse-grained tile can be executed in each Minion
(thread) in parallel. Then, the model selects the action (based
on the action data and the greedy policy) and sends it to
the output directly. Meanwhile, the model updates the Q-table
based on the previous state value and action if the policy needs
to be updated, which can contribute to accelerating the whole
process.

Ingress pipeline Egress pipeline
P4 Exteren Plugins

In-band RL

Input: Reward, State, Config Output: State, Action

HashMap
<Key, (State, Act)>Controller

ME 0

Minion

Minion

Minion

Minion

Minion

Minion

Minion++
ME 1

Minion

Minion

Minion

Minion

Minion

Minion

Minion Minion

…

Action Value

Choose Action

…

Atomic
Writeback

Config

Update Policy

2

3

1

Minion Minion Minion

Action Value: !!"#$% = [$& , $' , … , $(]

Minion

Tiling 1

Tiling 2 Tiling 3

Tiling 4

Tiling !)&
!!"#$% = !& + !' + !* + !+

Tiling !)' Tiling !)* Tiling !)+

RL cores
Memory

Commands

Fig. 17. Workflow of One-Step Temporal-Difference RL [207].

This implementation approach of one-step temporal-
difference RL takes advantage of P4 extern plugins in SoC-
or NPU-based SmartNICs. In the M/A pipeline, the RL
function is called using an extern to implement fixed point
values of actions and tile-coded policies.

2) Q-learning: Q-learning is an off-policy RL algorithm. It
uses the greedy approach to learn the value of an action given
a particular state and seeks to find the optimal action-selection
policy using a value function called the Q-function [256]. Q-
learning learns the value of the optimal policy without being
influenced by the actions of agents.

There are similarities between SARSA and Q-learning.
They are both model-free and value-based methods, which
means they do not require model knowledge and they update
the value function based on temporal difference learning. The
approach Q-learning uses to update a Q-table is shown in
Equation 8. It is similar to SARSA’s equation, but requires
an additional max operation.

19

Q(S,A)← (1− α)Q(S,A) + α
[
R(S, a) + γmax

a
Q (S′, a)

]
(8)

Consequently, the difficulties in Q-learning’s data plane im-
plementation are similar to that of SARSA’s implementation,
meaning how to update a Q-Table and how to realize ε-greedy
operation [208]. This similarity means it can also be imple-
mented by using ME externs, like SARSA’s implementation,
as reported in Section VI-D1.

The main difference between Q-learning and SARSA is
the order of Q-table updating and action execution. The
“decision first, update later” update order of Q-learning makes
it well-suited for execution in the data plane [209]. Figure 18
illustrates two additional data plane implementation methods
for Q-learning.

Input: !, # , #’, %

Control plane

Data plane
(a) Q-learning fully on Data Plane (b) Q-learning partially on Data Plane

Q-Table Q-Table

Calculate new Q-Table

Calculate new Q-Table

Return: %0 Return: %0

UpdateDigestUpdate

Fig. 18. Workflow of QCMP based in-network RL [209].

In the first approach, shown in Figure 18 (a), the Q-table
is stored within the data plane using registers [209], with the
state serving as the key and the concatenated Q-values of all
actions as the value. To determine the action, the input packet
must provide the current state S′, allowing the selection of
the action with the highest value using an ϵ-greedy policy
and a random number from the packet. For Q-table updates,
the previous state S, action a, and reward R(S, a) can either
be input from the packet or stored in the data plane using
registers. Equation 8 is applied, replacing multiplication with
tables that store intermediate results.

The second method (Figure 18 (b)), transfers the complex
Q-value calculation and Q-table update process to the control
plane [209]. Consequently, the Q-table can be stored in the
M/A table within the data plane.

In terms of implementation, the first method is more
resource-heavy, especially in stages, and better suited for
software switches, while the second method is compatible
with commodity hardware (such as Tofino switch-ASIC) but
exhibits slower response times to changes in the environment
due to the control plane’s latency. It therefore fits better ap-
plications that require occasional or periodic updates, without
precluding acting on every packet.

VII. CHALLENGES AND SOLUTIONS

While offloading ML models to programmable network
devices, many common challenges have been identified by
existing works, such as limited amounts of memory, restricted
number of stages, non-natively supported data types, and
weak computational capability. This is because ML models
usually have a relatively high implementation complexity but
programmable network devices have very limited hardware

resources. In the following subsections, we will list these
challenges and report possible solutions.

The many different implementations of in-network ML al-
gorithms face several common problems and challenges. These
challenges range from resource constraints, through limited
data types to weak computational capabilities. The application-
specific, constrained nature of network device architectures
stands in contrast to the increasingly large and complex
ML models. The following section discusses the common
challenges in mapping ML models to the data plane, and their
solutions.

The two central types of constraints that have been ad-
dressed to date are limited amount of resources (e.g., memory,
number of processing stages) and lack of functionality (e.g.,
support of data types or mathematical operations).

A. Restricted Number of Stages

Unlike CPUs, where instructions go through the pipeline
and the data is in the memory, in PISA-based devices the
data goes through the pipeline, and the instructions are in
the memory (M/A tables). To maintain line rate, packets go
through the pipeline only once, therefore the number of stages
in the pipeline is directly related to the number of serial
operations that can be done on a packet. This number of
stages, especially in switch-ASIC, is limited (e.g., 12 stages
per ingress or egress pipe in Tofino [257], and 20 stages
per pipe in Tofino 2 [258]), leading to a narrow range of
supported functionalities [16]. We classify the stage limitations
into two categories: actions with dependency and tables with
dependency, as explained next.

1) Actions with Dependencies: Theoretically, complex
computations can be enabled in programmable network de-
vices but require several steps of action, and in most cases,
these actions have dependencies. For example, multiplication
can be realized through repeated addition. However, the lim-
ited number of stages within the pipeline is prohibitive for such
solutions. Moreover, the lack of loops constrains it further.
Therefore, using the minimum stages for different complex
computations within programmable network devices is an open
challenge. The most common existing solution is using M/A
tables to store the results of complex calculations [16]. This
approach is inspired by the use of lookup tables in FPGAs to
realize different operations.

1 bit<64> m1 = 0x5555555555555555;
2 bit<64> m2 = 0x3333333333333333;
3 bit<64> m4 = 0x0f0f0f0f0f0f0f0f;
4 bit<64> m8 = 0x00ff00ff00ff00ff;
5 bit<64> m16 = 0x0000ffff0000ffff;
6 bit<64> m32 = 0x00000000ffffffff;
7 /* This PopCount is for 64-bits’ input */
8 action PopCount(bit<64> bitInput){
9 bit<64> x = (bit<64>) bitInput;

10 x = (x & m1) + ((x >> 1) & m1);
11 x = (x & m2) + ((x >> 2) & m2);
12 x = (x & m4) + ((x >> 4) & m4);
13 x = (x & m8) + ((x >> 8) & m8);
14 x = (x & m16) + ((x >> 16) & m16);
15 x = (x & m32) + ((x >> 32) & m32);
16 }

Code Example 1. PopCount code example under action format.

20

For example, Hamming weight (PopCount) shown in Code
Example 1 is a method to calculate the number of ones in a
64-bits string. It utilizes iterative right-shifting and bitwise &
operations to examine the least significant bit of each shifted
position, incrementing a counter accordingly, in which 24
arithmetic operations are needed (Line 10-15). Due to the
high dependency of these calculations, at least 18 pipeline
stages are required to enable this operation, which is more
than the maximum number of stages for the Tofino Switch
and some other programmable network devices. Instead, M/A
tables can replace these complex actions and require a much
smaller number of stages. Code Example 2 shows how to use
M/A tables to lookup the number of ones in a 64-bit string: we
split a 64 bits string into four 16 bits substrings, then we adopt
four 16 bits PopCount tables to lookup the number of ones in
each substring. Finally, the result is the sum of ones in four
substrings. The PopCount using M/A tables only consumes
three stages (compared with 18 stages using the first code)
and 4 SRAM-based tables of 64K entries.

1 action PopCount(bit<8> count) {
2 meta.popcount_result = count;
3 }
4 table popcount {
5 /* This is a 16-bit key */
6 key = { meta.popcount_input : exact; }
7 actions = { PopCount; }
8 const entries = {
9 0 : PopCount(0);

10 1 : PopCount(1);
11 2 : PopCount(1);
12 3 : PopCount(2);
13 4 : PopCount(1);
14 5 : PopCount(2);
15 ...
16 }
17 size = 65536; /* 2ˆ16 */
18 /* This is required too */
19 const default_action = PopCount(0);
20 }

Code Example 2. PopCount code example under table format. PopCount code
example under table format. Line 9-15 show five sample table entries. When
the input value meta.popcount input as the input for example equals 3
(...011) the output will be 2 based on the result hardcoded in line 12.

Thus, M/A tables are suited for executing complex operations
in programmable network devices without consuming many
pipeline stages, and enable calculating multiple operations
within a single table.

2) Tables with Dependencies: Intuitively, M/A tables may
have dependencies, and most of the dependencies are logically
needed and cannot be changed. For example, in ML models
like SVM and Ensemble models [16, 161], some tables have
a dependency on each other where the typical examples are
Vote Tables.

1 /* Tables have dependencies */
2 action do_vote1(bit<8> vote) { // vote = 1 or 0
3 meta.count_vote = meta.count_vote + vote;
4 }
5 action do_vote2(bit<8> vote) { // vote = 1 or 0
6 meta.count_vote = meta.count_vote + vote;
7 }
8 /* This helps to break the dependencies */
9 action do_vote1(bit<8> vote) { // vote = 1 or 0

10 meta.vote1 = vote;
11 }
12 action do_vote2(bit<8> vote) { // vote = 1 or 0
13 meta.vote2 = vote;

14 }
15 table vote_table1 {
16 key = { meta.input1 : exact; }
17 actions = { do_vote1; }
18 size = n;
19 }
20 table vote_table2 {
21 key = { meta.input2 : exact; }
22 actions = { do_vote2; }
23 }
24 /* Other method to calculate */
25 vote_table.apply(); // key1 = meta.vote1, key2 =

meta.vote2, action data == meta.vote1 + meta.
vote2 (pre calculated)

Code Example 3. Code example of tables with dependency due to technical
reasons.

As shown in Code Example 3 from Line 1 to Line 7, each
table calls an action, and the operations inside each action
are dependent. In order to prevent the dependency of tables
and save the stages consumed by arithmetic operations, it is
needed to: (i.) move logical operations out of actions under
each table (Line 8-14) (ii.) use M/A tables, which can ignore
the dependency of these operations, to calculate the results
(Line 24-25). Even though the tables without a dependency
can reduce stage usage, the number of tables in each stage is
still limited, and developers should not use too many tables
for computation within the data plane.

B. Limited Amount of Memory

Unlike end-host devices like servers, programmable network
devices are fast but have a comparatively small amount of
memory that contains only a few tens of MB of SRAM
and TCAM. Efficiently using precious space to store needed
information is an open problem that networking researchers
have been exploring for decades in the context of routing
tables [259]. This subsection includes two possible problems
as well as the solutions that can help reduce memory consump-
tion of in-network computations as well as ML algorithms.

1) Inefficient Mapping of inputs in Match-action tables:
Many arithmetic operations in ML algorithms are not natively
supported in programmable network devices. As noted above,
M/A tables are commonly used to look up the results of
these complex operations (e.g., predict a label from a set of
features): considering that f(·) is the lookup table and xi is
an input of lookup table (e.g., a feature in the ML algorithm),
the output of arithmetic operations y can be presented as
y = f(x1, x2, · · · , xn), where n is the number of features
in a ML algorithm [16].

Nentries = r1 × r2 × · · · × rn =

n∏
i=1

ri (9)

Equation 9 shows the number of table entries required in an
n inputs operation. ri represents the range of inputs xi: being
xmin
i the possible minimum value of xi and xmax

i the possible
maximum, ri = xmax

i −xmin
i +1. In case the range ri for each

feature xi is large, the total number of table entries will be also
large and may exceed table size limit. It is possible to reduce
the dimension of table entries by using intermediate inputs.
For instance, instead of directly setting the features as inputs,
using pre-computed posterior probability P(xi|y) as inputs can

21

significantly decrease the number of table entries and so the
memory. In short, the approach can be formulated as follows:
y = f(mid1, mid2, · · · , midn), where midi = g(xi) and g(·)
is a function that can map xi to a narrow range. Therefore, as
shown in Equation 10, the total number of used table entries
is

∑n
i=1 ri +

∏n
i=1 r

mid
i , where {midi | midmin

i ≤ midi ≤
midmax

i } and rmid
i = midmax

i −midmin
i + 1.

Nentries =

n∑
i=1

ri +

n∏
i=1

rimid (10)

Since the range of each input’s intermediate result (i.e., rimid)
is usually very narrow, the total number of table entries
Nentries is significantly reduced.

2) Excessive Exact-Match Table Entries: A large number
of table entries are required in many ML classification use
cases, such as in the decision table in DT, the vote-to-
class table in RF, and the lookup table in SVM that stores
intermediate results of complex arithmetic operations. Exact-
Match tables match a key with a table entry of an identical
value. Even if an Exact-Match Table is used appropriately to
look up the computational results, the number of table entries
is usually very large and may exceed hardware resources.
To solve this problem, the model can use three traditional
alternative matching approaches to map multiple entries in
the same scheme to a single output, meaning Longest Prefix
Match (LPM) [260], Ternary Match [16, 261], and Range
Match [219]. This can help significantly reduce the number
of table entries, however not every set of input features and
output actions easily maps to one of the three.

TABLE V
A COMPARISON OF FOUR DIFFERENT APPROACHES TO REDUCE EXACT

TABLE ENTRIES (EACH TABLE ENTRY: KEY - LABEL).

ID Exact LPM Ternary Range Default1

1 00001 - 1 00*** - 0 *000* - 1 [1, 1] - 1 00001 - 1
2 00010 - 0 01*** - 1 *0*1* - 0 [2, 3] - 0 00100 - 2
3 00011 - 0 001** - 2 *010* - 2 [4, 5] - 2 00101 - 2
4 00100 - 2 0011* - 0 *1*** - 1 [6, 7] - 0 01000 - 1
5 00101 - 2 0000* - 1 [8, 8] - 1
6 00110 - 0
7 00111 - 0
8 01000 - 1

1 Using default action to replace the hottest class. In this case, label 0 is
stored as default.

Table V shows an example of using different matches to
save memory resources: while exact match needs 8 table
entries according to the label in the ML model, LPM requires 5
entries and Ternary match consumes only 4 entries. To elabo-
rate, in LPM the table entry with the longest matching prefix is
selected. For instance, the input 00001 matches both 00*** in
ID 1 and 0000* in ID 5. The output will still be 1 because the
matching length of 0000* in ID 5 is the longest. The ternary
match is determined by key&mask == input&mask. When
multiple rows are hit, the one with the highest order (ID)
will be chosen as the output. For example, if the input is

01111, *1*** in row ID 4 will be matched because 01111
& 01000 == 01000 & 01000, resulting in an output of 1
(*1*** is an abbreviation for key 01000 and mask 01000,
which only focuses on the fourth bit value). Range match is
straightforward, where the output is the interval of table entries
that includes the input value. This illustrates how when there
is a large number of input features and a determined range
of the label, Range/LPM/Ternary-based approaches may be
more effective than Exact Match. In general, the choice of a
matching approach depends on the characteristics of the ML
model and features space. In our example, Ternary match uses
the smallest number of entries, but in other cases, LPM or
Range-match may have better performance [161].

While Exact Match often uses SRAM, Range-based matches
use TCAM (or SRAM-based algorithmic TCAM). Effectively
using TCAM for ML use cases is an interesting research
topic that can build upon past work on efficient TCAMs
usage, trying to optimize for TCAM’s high power dissi-
pation [262], compression potential [263], and compression
complexity [264]. While past work focused on matching in
forwarding and routing tables (e.g., [263, 264]), ML features
space is richer and may not exhibit the same spatial and
temporal properties that were leveraged in past work, creating
new research opportunities.

In P4, a key that is missing from the M/A table is assigned
a default action. In Table V, the Default column refers to
the case where default is assigned label 0 as the action. For
instance, if the input is 00111, the output (under the Default
column) will be 0. Consequently, a ML model can use the
default action to remove the most frequent label in the table.
That is, the action with the largest number of table entries
can be configured as the default action and table size can be
significantly reduced.

C. Non-Supported Data Types

The support of some data types is missing in programmable
data planes for ML. The most common missing type is
floating-point, frequently used in ML implementation. We
mainly discuss alternative ways of implementing floating
points and negative numbers in this section.

1) Floating-point Number: Most ML algorithms are de-
veloped using floating point numbers, which are not natively
supported in P4-capable programmable data planes. However,
floating point values are not the only feasible way of numerical
presentation for real numbers [185]. Take the training process
of DNN as an example, there are several solutions includ-
ing block floating-point representation [265, 266], fixed-point
quantization, and quantization after mapping using an adaptive
scaling factor [185]. For quantization methods, dithering for
floating-point numbers can be applied to reduce quantization
error by introducing random noise [267, 268, 269, 270, 271]).
Here, we provide an example of the most commonly used
method, the quantization after mapping. For an input such as
-0.25, the output will be 48 when the factor is 10 and shift
is 5 (round((value+ shift) ∗ factor)). Although this result
has some accuracy loss, the specific accuracy loss rate can be

22

controlled by adjusting the factor, which applies to most use
cases.

2) Negative Number: Storing and computing using nega-
tive numbers is an inevitable challenge when implementing
ML algorithms. Suppose we have a binary value of 0110,
representing the decimal number 6 in unsigned binary notation.
If we use a signed bit at the leftmost position, the same binary
value can represent both positive and negative numbers. In
this case, the signed bit is 0, indicating a positive number.
However, if we change the signed bit to 1, the same binary
value now represents a negative number. To distinguish be-
tween positive and negative numbers, we need to use the most
significant bit as a sign bit. However, this approach sacrifices
the range of values (e.g., only use 63 bits instead of 64 bits can
be used to represent a number) and is not enough for unifying
positive and negative numbers in computations. An alternative
solution is to use two’s complement representation [272]: the
two’s complement of a positive number and 0 is the number
itself, whereas the two’s complement of a negative number can
be calculated by reversing the bits of its corresponding positive
number and adding 1. For example, the two’s complement of
the decimal number 6 is 0110 while the two’s complement of
the decimal number -6 is 1010, which is obtained by reversing
the bits of 0110 and adding 1. In this way, one can represent
both positive and negative numbers using the same number
of bits, and any computation containing negative numbers in
programmable network devices is feasible. Two’s complement
is also often used in digital electronics to replace a subtraction
operation. Note that in many cases the handling or conversion
of negative numbers can be done in the compilation stage,
where table entries are generated, and is not required as a
data plane operation.

D. Limited Computational Capability

To assure high packet processing speed, programmable
network devices only support a limited number of basic
arithmetic and logical operations, such as addition (+),
subtraction (−), leftshift (<<), right shift (>>), xor (∧) and
if-else condition. However, some additional operations, like
the comparison of two variables, division, multiplication,
frequency count, and matrix multiplication, are inevitable
when implementing ML algorithms. In this subsection, we
identify the limitations and report potential solutions for them.

In some programmable network devices, comparing two
variables directly in an if-else condition does not have a
primitive, which may be troublesome when implementing
ML models with an explicit comparison. As shown in Code
Example 4, to compare two variables, the implicit comparison
is needed by computing the difference of variables out of
the if-else condition and then comparing the difference with
0 [161].

1 /* This is the comparison of two variables */
2 action do_subtract(){sub = meta.a - meta.b}
3 /* Logic part */
4 do_subtract()

5 if (sub < 0){...}

Code Example 4. Code example of how to do comparison between two
integers

As shown in Code Example 4, when subtraction is needed,
one should subtract outside the condition and isolate the
comparison into a separate action.

1) Multiplication: Multiplication is a basic arithmetic op-
eration frequently used in ML algorithms. Multiplication can
be computed using either M/A tables or bit shifting when one
of the multiplication factors is a power of 2. In case M/A
tables are used, the output returns the product of the multiplied
operands.

Product = Factor1 << log2(Factor2) (11)

Equation 11 shows how to calculate the product of two
multipliers if any of the two multipliers is a power of 2.
This method can also be extended to more general cases.
For instance, if a Factor2 is known as a constant 6, the
product is Factor1∗6, which can be decomposed to Factor1∗
2 + Factor1 ∗ 4. Then the result is retrieved by computing
Factor1 << 1+Factor1 << 2 (a different decomposition is
possible with subtractions but is sometimes less efficient in the
hardware). The value on the right side of the left shift needs
to be pre-stored in P4 code.

0 100 200 300 400 500 600 700 800 900 1000
Factor value

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
er

ro
r

maximum 1 remaining term
maximum 2 remaining terms
maximum 3 remaining terms
maximum 4 remaining terms
maximum 5 remaining terms

Fig. 19. The variation of relative error with the value of a factor that is
decomposed under different limitations to the maximum number of remaining
terms.

However, only a limited number of decomposition terms
can be considered since too many terms would exceed
the number of stages in a programmable network devices.
Therefore, we present the variation of relative error with
the value of a factor that is decomposed under different
limitations to maximize the number of terms from our
experimental results. As shown in Figure 19, multiplication
results get more accurate when more decomposition terms are
retained. More importantly, it proves that choosing the larger
number as the divided factor will obtain more accurate results.

2) Division: Division an elementary but necessary arith-
metic operations in ML models. However, since division
requires too many sub-binary calculations that slow the packet
processing, P4 does not natively support it. Similar to multi-
plication, such an operation can be replaced by a M/A table
and bit shifting [273]. If the dividend or divisor is a constant,
the result of the division can be looked up in a M/A table with
stored results. However, in case both components are variables,
the size of the required table exponentially increases. This

23

makes M/A tables less effective when computing the division
of two variables. As an alternative solution, bit shift is more
suitable and efficient when the divisor is a constant and a
power of 2.

Quotient = Dividend >> log2(Divisor) (12)

Equation 12 shows that the quotient can be obtained easily
by right shifting log2(Divisor) bits. Division should be not
frequently used since it usually consumes too many hardware
resources.

3) Frequency: Frequency (e.g., packet and flow count) is
needed as a high-level input feature of ML models. However,
when the number of inputs is large, counting frequency
requires large memory and stage consumption. Sketches are
an efficient way often used in networking to approximate
frequency considering memory constraints, in which the two
most commonly used are Count Sketch and Count-min Sketch.

Count Sketch is composed of d rows with size K,
and it uses two sets of hash functions {h1, . . . , hd} and
{g1, . . . , gd} [274]. Hash functions hi are used to map n
inputs (e.g., a field extracted from packet header) into a lower
dimension space K (K is much smaller than n), and hash
functions gi are the values (either -1 or 1) to update the
counters, where hi : X 7→ {0,K} and gi : X 7→ {−1, 1}.
For any incoming input, the sketch updates the corresponding
counter with index hi in each row, which can be formulated
as Ci,hi(x) ← Ci,hi(x) + gi(x). When querying frequency, the
estimated result is the median value of each row’s counter
multiplied by gi(x) as shown in Equation 13.

median{g1(x)C1,h1(x), . . . , gd(x)Cd,hd(x)}. (13)

Count-min sketch is a simplified version of count sketch.
Instead of using hash function g, it uses add one in the update
counter (hi) process and uses Equation 14 to evaluate the
result.

min{C1,h1(x), . . . , Cd,hd(x)}. (14)

Compared to Count-min Sketch, Count Sketch has a better
accuracy and memory trade-off. However, Count-min sketch
only needs one hash function and is easier to be implemented
in programmable network devices. The choice of sketches
depends on the different requirements of ML algorithms.

4) Matrix Multiplication: Many ML algorithms, especially
neural network-based algorithms, require matrix multiplica-
tion. However, as noted before, multiplication operations and
floating-point values may not be supported. The most intuitive
solution for matrix multiplication is to use M/A tables to store
the intermediate results of the calculation, which has been
widely used in programmable switches with a limited number
of stages [16, 161, 188, 203]. Another less-common solution,
initially introduced by BNN, uses mathematical operations and
newly defined data types to approximate the multiplication
result [226]. This approach requires more stages but less
memory, which is feasible as a solution in SmartNICs and
software switches.

Considering BNN as an example, the model optimizes and
simplifies the matrix multiplication in a fully connected neural
network to an input matrix and a weight matrix, where each
matrix is a binary matrix. The product of the two matrices
is the closest approximation to the neural network. It has
been proved that matrix multiplication can be computed by
solving an optimization problem as reported in [226]. More
specifically, the task is divided into two parts. First, the weights
are replaced with binary numbers. Shown in Figure 11 Step
1, the input and weight are of size n, and X,W ∈ R1×n.
Suppose that there is a binary metric B ∈ {+1,−1}n×1 and
a scaling factor α ∈ R+ such that the composed weight,
XTW ≈ XTαB, should be as close to the original weight as
possible.

α∗,B∗ = argmin
α,B

∥W − αB∥2 (15)

The optimization can be solved by expanding the Equation 15.
The optimized binary weight is B∗ = sign(W) and the scaling
factor is α∗ = 1

n∥W∥ℓ1.
Second, binary the input X into H ∈ {+1,−1}n with a

scaling factor β ∈ R+. The constructed inputs and the weights
need to be very similar to each other X⊤W ≈ βH⊤αB.
Then, suppose Yi = XiWi, Ci = HiBi, γ = βα and get
the following optimization.

γ∗,C∗ = argmin
γ,C

∥X⊙W−βαH⊙B∥ = argmin
γ,C

∥Y−γC∥

(16)
The form of this optimization is similar to Equation 15
using a similar method and result of binary weight. The
optimized multiplication of the constructed input and weights
is C∗ = sign(Y) = sign(X) ⊙ sign(W), where ⊙ indicates
element-wise product, and the optimized multiplication of
scaling factor is γ∗ = 1

n∥X∥ℓ1
1
n∥W∥ℓ1 = β∗α∗. Then, the

output of step 2 in Figure 11 is shown in the Equation 17.

XTW =

n∑
i=1

C∗
i ≈ β∗α∗

n∑
i=1

(sign(X)⊙ sign(W))i (17)

When two values m,n ∈ {−1, 1}, m⊕n will have most sim-
ilar pattern to the m⊙n. Thus, replace ⊙ by ⊕. β∗α∗ can be
ignored due to the multiplication operation. The multiplication
of all inputs and weights and the summation can be simplified
to Equation 18.

XTW ≈
n∑

i=1

(sign(X)⊕ sign(W))i (18)

In this Equation, the result will remain the same when inputs
and weights change to the bit format X,W ∈ {0, 1}n.
Therefore, XTW calculation is finally transformed to the
form with only ⊕ (XNOR) and

∑
(summation, a sequence of

additions) operations, which can be implemented in the data
plane.

E. Other Limitations

In addition to the aforementioned limitations, there are
still many unsolved challenges related to in-network ML
algorithms, including but not limited to:

24

• Updating ML models during runtime: When a model
is deployed, due to the appearance of new data, change of
environment, and drift of concepts, an existing model may
no longer be able to predict outcomes accurately. Models
require timely updates to keep their ML performance.
In-network ML update is not easy as server-based ML,
and it is challenging to conduct a hitless update process
with minor to no influence on normal packet forwarding
functionality.

• In-network ML when traffic is encrypted: In general,
many applications and protocols encrypt the data payload,
which includes any user data that is being transmitted. In
host-based ML, the traffic is decrypted before it is sent
for inference. In-network ML may not be able to deal
with encrypted data, though it can still take advantage of
unencrypted protocol headers or metadata. Some new de-
vices, such as SmartNICs, include encryption/decryption
accelerator cores that can allow overcoming the problem,
yet there is no solution for switch-ASIC.

• Increasing the scalability of ML models supported
by programmable network devices: Current in-network
ML still supports only limited model sizes due to resource
constraints on programmable network devices. This can
limit potential applications of in-network ML on multiple
use cases. Potential solutions for this are all challenging
to realize, whether designing a new target with more
resources, upgrading the ML algorithm with less resource
consumption, or scaling the model by deploying it on
multiple devices [189].

These open questions are left for the community to explore
in the future.

VIII. LESSONS LEARNED AND FUTURE TRENDS

A. Lessons Learned

This survey covers the definition of in-network ML, clar-
ifies the scope, describes its evolution and background, and
reports state-of-art research and solutions in P4-capable pro-
grammable network devices.

Intuitively, in-network ML is an emerging research field that
has already attracted a lot of interest. Research to date has
mainly focused on offloading and mapping ML techniques
to programmable data planes. Many ML models and their
enhancements have been proposed and implemented. As net-
work devices are resource constrained, the size of the models
implemented was limited. Despite that, existing works have
proven that high ML performance can be achieved for some
use cases, providing inference in the network with a good
trade-off between model size and accuracy. This makes in-
network ML a promising research direction.

The applications of in-network ML have so far focused on
traditional networking use cases, and in particular security
applications such as anomaly detection and DDoS detection
and mitigation [17, 194, 200, 201, 202, 210, 217, 218]. While
these are mostly volumetric in nature, and benefit from the
high packet processing rate of network devices, a different
direction is to benefit from latency reduction, such as in
financial use cases [201, 213]. To support these use cases,

feature extractions for in-network ML have used both stateful
and stateless features. A challenge in expanding the adoption
of in-network ML is the limited availability of automated tools
and frameworks. Only a few works developed frameworks to
ease and accelerate the adoption of in-network ML. These
include automating in-network ML generation (Planter [161]),
parameter tuning (Homunculus [190]), and distributed deploy-
ment (DINC [189]).

Though the ML performance and overhead of each in-
network ML model are compared in Planter [161], there
is currently no unified benchmark for resource consump-
tion in programmable network devices and ML classification
performance, which makes it difficult to compare different
works and balance models’ performance against its resource
consumption.

B. Future Trends

There are several foreseeable research directions for in-
network ML.

• Runtime programmability: Currently, every time the
ML model in the data plane is changed or the model’s
parameters require an update, the developers have to
recompile the program and execute new compiled code
in the network device. The problem can be divided to
two parts: changing the value of a used parameter, and
changing the features being extracted and used. The first
may be solved by storing parameters in re-configurable
memory (e.g., tables) and atomically updating them, in a
manner similar to routing rules and without affecting traf-
fic. The second, feature extraction, is more challenging as
P4 manipulation may be unavoidable. While solutions to
P4 runtime programmability have been suggested [275],
none were applied to in-network ML or can easily be
adapted.

• Large-scale ML models: Applying ML to network-
related problems requires processing large amounts of
data from the network, matching traffic rates. Traditional
ML approaches can’t handle such traffic volumes at
real time, making in-network ML a favorable solution.
However, to support a wide range of use cases with high
inference performance, it is required to support large-
scale ML models. Mapping large ML models to network
devices, overcoming their resource constraints, requires
new offloading approaches. One possible solution is de-
composing a large-scale model into multiple components
and distributing them into programmable network de-
vices, as done with some P4 programs [189, 276]. Then,
a coordinator (e.g., an SDN controller) can be used to
retrieve the results from multiple devices and make a final
decision.

• Benchmarks and metrics: A variety of ML models
have been mapped to a range of programmable net-
work devices. To date, in-network ML publications have
been use case focused, or model and hardware specific,
thereby failing to comprehensively showcase algorithm
performance from a varied perspective. Consequently, it
is hard to fairly compare different solutions. To solve

25

this problem, it is necessary to create a benchmark kit
for a unified quantitative assessment, as done for other
ML solutions [277]. Such a benchmark will track and
compare the performance of different in-network ML
algorithms across platforms, as well as assess the state-
of-the-art in a particular task or application.

• More in-network ML use cases: Many ML models have
been proven feasible and reliable in the use cases that are
described in existing works, especially network anomaly
detection. However, the range of in-network ML use
cases is still very narrow, leading to limited adoption in
practice. Applying in-network ML beyond the networking
domain, to fields such as Natural Language Processing
and Computer Vision, is worth exploring. In-network ML
can potentially be applied also to 6G, providing a faster
and more robust network, and to smart cities empowering
IoT devices with low-latency ML services. At a certain
point, the emergence of new use cases for in-network ML
will drive ML improvements and give rise to novel ideas.

In-network ML is increasingly recognized as a viable com-
putational paradigm for ML-based applications, especially in
the networking domain [209, 215]. While not all ML-based
applications will benefit from in-network ML, highly data
intensive use cases and those requiring ultra-low latency are
prime candidates. As the deployment methodologies of in-
network ML continue to evolve, the optimal exploitation of
this new technology remains subject for ongoing discussions.
In the short term, in-network ML is not expected to replace
established ML accelerators, such as GPUs. It complements
existing computing methods and serves use cases with specific
requirements. Identifying use cases outside the networking
domain remains the focus of future research.

IX. CONCLUSIONS

Offloading computing tasks from end servers into pro-
grammable network devices is an ideal way to reduce the
workload of CPU and accelerate the data processing in modern
computing infrastructure. This paper provided an overview
of in-network ML using P4-capable programmable network
devices. We reviewed the background, history, and recent
development of in-network ML. In particular, we presented
different types of ML algorithms in programmable data planes
in detail as well as how the implementation challenges are
dealt with. Finally, we summarized the lessons that we learned
and provided our insights on the future trends of in-network
ML. As programmable network devices becomes more pow-
erful, this topic has the potential to be developed in the future.

ACKNOWLEDGMENTS

This paper complies with all applicable ethical standards of
the authors’ home institution. This work was partly funded by
VMware, Innovate UK (project 10056403) in the context of
the SmartEdge EU project (grant agreement No. 101092908),
the Leverhulme Trust (ECF-2016-289), and the Isaac Newton
Trust. We acknowledge support from Intel. We would like
to thank the anonymous reviewers, Riyad Bensoussane and
Sawsan EL-Zahr for their valuable feedback, and Radostin

Stoyanov for their contribution to early work of this paper. For
the purpose of Open Access, the author has applied a CC BY
public copyright license to any Author Accepted Manuscript
(AAM) version arising from this submission.

REFERENCES

[1] “Barefoot Tofino,” https://www.barefootnetworks.c
om/products/brief-tofino/ [Online; accessed November
2023].

[2] “Spectrum SN4000 Open Ethernet Switches,” Website,
https://www.nvidia.com/en-us/networking/ethernet-swi

tching/spectrum-sn4000/ [Online; accessed November
2023].

[3] “AMD Pensando™ Infrastructure Accelerators,” Web-
site, https://www.amd.com/en/accelerators/pensando
[Online; accessed November 2023].

[4] “NVIDIA BlueField Data Processing Units,” Website,
https://www.nvidia.com/en-us/networking/products/da

ta-processing-unit/ [Online; accessed November 2023].
[5] “Broadcom Stingray SmartNIC Accelerates Baidu

Cloud Services,” https://www.broadcom.com/com
pany/news/product-releases/53106 [Online; accessed
November 2023].

[6] “Netronome Flow Processor Product Brief,” Web-
site, https://www.netronome.com/media/documents/
PB NFP-6000-7-20.pdf [Online; accessed November
2023].

[7] S. Ibanez, G. Brebner, N. McKeown, and N. Zil-
bermann, “The P4→NetFPGA Workflow for Line-
Rate Packet Processing,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, 2019, pp. 1–9.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese et al., “P4: Programming Protocol-
independent Packet Processors,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[9] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and
P. Kalnis, “In-network Computation Is A Dumb Idea
Whose Time Has Come,” in Proceedings of the 16th
ACM Workshop on Hot Topics in Networks, 2017, pp.
150–156.

[10] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and
N. Zilberman, “The Case for In-network Computing
on Demand,” in Proceedings of the Fourteenth EuroSys
Conference 2019, 2019, pp. 1–16.

[11] A. W. Moore and D. Zuev, “Internet Traffic Classifi-
cation Using Bayesian Analysis Techniques,” in Pro-
ceedings of the 2005 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems, 2005, pp. 50–60.

[12] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues
and Future Directions in Traffic Classification,” IEEE
network, vol. 26, no. 1, pp. 35–40, 2012.

[13] D. K. Bhattacharyya and J. K. Kalita, Network Anomaly
Detection: A Machine Learning Perspective. Crc Press,
2013.

https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.amd.com/en/accelerators/pensando
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.broadcom.com/company/news/product-releases/53106
https://www.broadcom.com/company/news/product-releases/53106
https://www.netronome.com/media/documents/PB_NFP-6000-7-20.pdf
https://www.netronome.com/media/documents/PB_NFP-6000-7-20.pdf

26

[14] R. Doshi, N. Apthorpe, and N. Feamster, “Machine
Learning DDoS Detection for Consumer Internet of
Things Devices,” in 2018 IEEE Security and Privacy
Workshops (SPW). IEEE, 2018, pp. 29–35.

[15] D. Sanvito, G. Siracusano, and R. Bifulco, “Can The
Network Be The AI Accelerator?” in Proceedings of
the 2018 Morning Workshop on In-Network Computing,
2018, pp. 20–25.

[16] Z. Xiong and N. Zilberman, “Do Switches Dream of
Machine Learning? Toward In-network Classification,”
in Proceedings of the 18th ACM workshop on hot topics
in networks, 2019, pp. 25–33.

[17] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “pHeavy:
Predicting Heavy Flows in The Programmable Data
Plane,” IEEE Transactions on Network and Service
Management, 2021.

[18] T. C. Silva and L. Zhao, Machine Learning in Complex
Networks. Springer, 2016, vol. 1.

[19] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi,
N. Shahriar, F. Estrada-Solano, and O. M. Caicedo, “A
Comprehensive Survey on Machine Learning for Net-
working: Evolution, Applications And Research Oppor-
tunities,” Journal of Internet Services and Applications,
vol. 9, no. 1, pp. 1–99, 2018.

[20] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Ma-
chine Learning for Networking: Workflow, Advances
and Opportunities,” Ieee Network, vol. 32, no. 2, pp.
92–99, 2017.

[21] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gure-
vich, F. Zeiger, R. Frank, and M. Menth, “A Sur-
vey on Data Plane Programming with P4: Fundamen-
tals, Advances, and Applied Research,” arXiv preprint
arXiv:2101.10632, 2021.

[22] R. Bifulco and G. Rétvári, “A Survey on The Pro-
grammable Data Plane: Abstractions, Architectures, and
Open Problems,” in 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing
(HPSR). IEEE, 2018, pp. 1–7.

[23] A. Y. Nikravesh, S. A. Ajila, C.-H. Lung, and
W. Ding, “Mobile Network Traffic Prediction Using
MLP, MLPWD, And SVM,” in 2016 IEEE Inter-
national Congress on Big Data (BigData Congress).
IEEE, 2016, pp. 402–409.

[24] A. Eswaradass, X.-H. Sun, and M. Wu, “Network Band-
width Predictor (NBP): A System for Online Network
Performance Forecasting,” in Sixth IEEE International
Symposium on Cluster Computing and the Grid (CC-
GRID’06), vol. 1. IEEE, 2006, pp. 4–pp.

[25] S. Chabaa, A. Zeroual, J. Antari et al., “Identification
And Prediction of Internet Traffic Using Artificial Neu-
ral Networks,” Journal of Intelligent Learning Systems
and Applications, vol. 2, no. 03, p. 147, 2010.

[26] Y. Zhu, G. Zhang, and J. Qiu, “Network Traffic Predic-
tion Based on Particle Swarm BP Neural Network,” J.
Networks, vol. 8, no. 11, pp. 2685–2691, 2013.

[27] Y. Li, H. Liu, W. Yang, D. Hu, and W. Xu, “Inter-data-
center Network Traffic Prediction with Elephant Flows,”
in NOMS 2016-2016 IEEE/IFIP Network Operations

and Management Symposium. IEEE, 2016, pp. 206–
213.

[28] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto,
Y. Geng, L. Chen, K. Chen, and H. Jin, “Online Flow
Size Prediction for Improved Network Routing,” in
2016 IEEE 24th International Conference on Network
Protocols (ICNP). IEEE, 2016, pp. 1–6.

[29] Z. Chen, J. Wen, and Y. Geng, “Predicting Future Traffic
Using Hidden Markov Models,” in 2016 IEEE 24th
international conference on network protocols (ICNP).
IEEE, 2016, pp. 1–6.

[30] R. Alshammari and A. N. Zincir-Heywood, “Machine
Learning Based Encrypted Traffic Classification: Iden-
tifying SSH and Skype,” in 2009 IEEE symposium
on computational intelligence for security and defense
applications. IEEE, 2009, pp. 1–8.

[31] A. Finamore, M. Mellia, M. Meo, and D. Rossi, “Kiss:
Stochastic Packet Inspection Classifier for UDP Traffic,”
IEEE/ACM Transactions on Networking, vol. 18, no. 5,
pp. 1505–1515, 2010.

[32] D. Schatzmann, W. Mühlbauer, T. Spyropoulos, and
X. Dimitropoulos, “Digging into HTTPS: Flow-based
Classification of Webmail Traffic,” in Proceedings of
the 10th ACM SIGCOMM conference on Internet mea-
surement, 2010, pp. 322–327.

[33] P. Bermolen, M. Mellia, M. Meo, D. Rossi, and
S. Valenti, “Abacus: Accurate Behavioral Classification
of P2P-TV Traffic,” Computer Networks, vol. 55, no. 6,
pp. 1394–1411, 2011.

[34] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector
Machines for TCP Traffic Classification,” Computer
Networks, vol. 53, no. 14, pp. 2476–2490, 2009.

[35] A. F. Esteves, P. R. In, M. Pereira et al., “On-line
Detection of Encrypted Traffic Generated by Mesh-
based Peer-to-peer Live Streaming Applications: The
Case of GoalBit,” in 2011 IEEE 10th International
Symposium on Network Computing and Applications.
IEEE, 2011, pp. 223–228.

[36] P. Haffner, S. Sen, O. Spatscheck, and D. Wang,
“ACAS: Automated Construction of Application Sig-
natures,” in Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data, 2005, pp. 197–202.

[37] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang,
“Internet Traffic Classification by Aggregating Corre-
lated Naive Bayes Predictions,” IEEE transactions on
information forensics and security, vol. 8, no. 1, pp.
5–15, 2012.

[38] A. Dainotti, A. Pescapé, and C. Sansone, “Early
Classification of Network Traffic Through Multi-
classification,” in International Workshop on Traffic
Monitoring and Analysis. Springer, 2011, pp. 122–
135.

[39] T. T. Nguyen, G. Armitage, P. Branch, and S. Zan-
der, “Timely And Continuous Machine-learning-based
Classification for Interactive IP Traffic,” IEEE/ACM
Transactions On Networking, vol. 20, no. 6, pp. 1880–
1894, 2012.

[40] W. De Donato, A. Pescapé, and A. Dainotti, “Traffic

27

Identification Engine: An Open Platform for Traffic
Classification,” IEEE Network, vol. 28, no. 2, pp. 56–
64, 2014.

[41] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield,
“Class-of-service Mapping for QoS: A Statistical
Signature-based Approach to IP Traffic Classification,”
in Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement, 2004, pp. 135–148.

[42] L. He, C. Xu, and Y. Luo, “VTC: Machine Learning
Based Traffic Classification As A Virtual Network
Function,” in Proceedings of the 2016 ACM Inter-
national Workshop on Security in Software Defined
Networks & Network Function Virtualization, 2016, pp.
53–56.

[43] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu,
“Robust Network Traffic Classification,” IEEE/ACM
transactions on networking, vol. 23, no. 4, pp. 1257–
1270, 2014.

[44] Y. Liu, W. Li, and Y. Li, “Network Traffic Classification
Using K-means Clustering,” in Second international
multi-symposiums on computer and computational sci-
ences (IMSCCS 2007). IEEE, 2007, pp. 360–365.

[45] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson,
“Identifying And Discriminating Between Web And
Peer-to-peer Traffic in The Network Core,” in Proceed-
ings of the 16th international conference on World Wide
Web, 2007, pp. 883–892.

[46] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and
K. Salamatian, “Traffic Classification on The Fly,” ACM
SIGCOMM Computer Communication Review, vol. 36,
no. 2, pp. 23–26, 2006.

[47] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and
C. Williamson, “Offline/Realtime Traffic Classification
Using Semi-supervised Learning,” Performance Evalu-
ation, vol. 64, no. 9-12, pp. 1194–1213, 2007.

[48] W. Li and A. W. Moore, “A Machine Learning Ap-
proach for Efficient Traffic Classification,” in 2007 15th
International symposium on modeling, analysis, and
simulation of computer and telecommunication systems.
IEEE, 2007, pp. 310–317.

[49] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and
Z.-L. Zhang, “A Modular Machine Learning System for
Flow-level Traffic Classification in Large Networks,”
ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 6, no. 1, pp. 1–34, 2012.

[50] M. Elnawawy, A. Sagahyroon, and T. Shanableh,
“FPGA-based Network Traffic Classification Using Ma-
chine Learning,” IEEE Access, vol. 8, pp. 175 637–
175 650, 2020.

[51] K. Hara and K. Shiomoto, “Intrusion Detection Sys-
tem Using Semi-Supervised Learning with Adversarial
Auto-encoder,” in NOMS 2020-2020 IEEE/IFIP Net-
work Operations and Management Symposium. IEEE,
2020, pp. 1–8.

[52] D. M. Casas-Velasco, O. M. C. Rendon, and N. L.
da Fonseca, “DRSIR: A Deep Reinforcement Learning
Approach for Routing in Software-Defined Network-
ing,” IEEE Transactions on Network and Service Man-

agement, 2021.
[53] D. M. Casas-Velasco, O. M. C. Rendon, and N. L.

da Fonseca, “Intelligent Routing Based on Rein-
forcement Learning for Software-Defined Networking,”
IEEE Transactions on Network and Service Manage-
ment, vol. 18, no. 1, pp. 870–881, 2020.

[54] A. Forster and A. L. Murphy, “FROMS: Feedback
Routing for Optimizing Multiple Sinks in WSN with
Reinforcement Learning,” in 2007 3rd international
conference on intelligent sensors, sensor networks and
information. IEEE, 2007, pp. 371–376.

[55] R. Arroyo-Valles, R. Alaiz-Rodriguez, A. Guerrero-
Curieses, and J. Cid-Sueiro, “Q-Probabilistic Routing in
Wireless Sensor Networks,” in 2007 3rd International
Conference on Intelligent Sensors, Sensor Networks and
Information. IEEE, 2007, pp. 1–6.

[56] T. Hu and Y. Fei, “QELAR: A Machine-Learning-
Based Adaptive Routing Protocol for Energy-Efficient
And Lifetime-Extended Underwater Sensor Networks,”
IEEE Transactions on Mobile Computing, vol. 9, no. 6,
pp. 796–809, 2010.

[57] A. A. Bhorkar, M. Naghshvar, T. Javidi, and B. D. Rao,
“Adaptive Opportunistic Routing for Wireless Ad Hoc
Networks,” IEEE/ACM Transactions On Networking,
vol. 20, no. 1, pp. 243–256, 2011.

[58] N. Fonseca and M. Crovella, “Bayesian Packet Loss
Detection for TCP,” in Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communi-
cations Societies., vol. 3. IEEE, 2005, pp. 1826–1837.

[59] I. El Khayat, P. Geurts, and G. Leduc, “Improving TCP
in Wireless Networks with an Adaptive Machine-Learnt
Classifier of Packet Loss Causes,” in International Con-
ference on Research in Networking. Springer, 2005,
pp. 549–560.

[60] El Khayat, Ibtissam and Geurts, Pierre and Leduc, Guy,
“Enhancement of TCP over Wired/Wireless Networks
with Packet Loss Classifiers Inferred by Supervised
Learning,” Wireless Networks, vol. 16, no. 2, pp. 273–
290, 2010.

[61] P. Geurts, I. El Khayat, and G. Leduc, “A Machine
Learning Approach to Improve Congestion Control over
Wireless Computer Networks,” in Fourth IEEE Interna-
tional Conference on Data Mining (ICDM’04). IEEE,
2004, pp. 383–386.

[62] I. El Khayat, P. Geurts, and G. Leduc, “Machine-
learnt versus Analytical Models of TCP Throughput,”
Computer Networks, vol. 51, no. 10, pp. 2631–2644,
2007.

[63] M. F. Zhani, H. Elbiaze, and F. Kamoun, “α SNFAQM:
An Active Queue Management Mechanism Using Neu-
rofuzzy Prediction,” in 2007 12th IEEE Symposium on
Computers and Communications. IEEE, 2007, pp.
381–386.

[64] S. Masoumzadeh, G. Taghizadeh, K. Meshgi, and
S. Shiry, “Deep Blue: A Fuzzy Q-Learning Enhanced
Active Queue Management Scheme,” in 2009 Interna-
tional Conference on Adaptive and Intelligent Systems.
IEEE, 2009, pp. 43–48.

28

[65] H. Jiang, Y. Luo, Q. Zhang, M. Yin, and C. Wu, “TCP-
Gvegas with Prediction And Adaptation in Multi-hop
Ad Hoc Networks,” Wireless Networks, vol. 23, no. 5,
pp. 1535–1548, 2017.

[66] A. P. Silva, K. Obraczka, S. Burleigh, and C. M. Hirata,
“Smart Congestion Control for Delay-and Disruption
Tolerant Networks,” in 2016 13th Annual IEEE Inter-
national Conference on Sensing, Communication, and
Networking (SECON). IEEE, 2016, pp. 1–9.

[67] D. Vassis, A. Kampouraki, P. Belsis, and C. Skourlas,
“Admission Control of Video Sessions over Ad Hoc
Networks Using Neural Classifiers,” in 2014 IEEE
Military Communications Conference. IEEE, 2014,
pp. 1015–1020.

[68] A. Hiramatsu, “ATM Communications Network Control
by Neural Network,” detail, vol. 1, p. 260, 1989.

[69] N. Baldo, P. Dini, and J. Nin-Guerrero, “User-driven
Call Admission Control for VoIP over WLAN with
A Neural Network Based Cognitive Engine,” in 2010
2nd International Workshop on Cognitive Information
Processing. IEEE, 2010, pp. 52–56.

[70] N. Baldo and M. Zorzi, “Learning And Adaptation
in Cognitive Radios Using Neural Networks,” in 2008
5th IEEE Consumer Communications and Networking
Conference. IEEE, 2008, pp. 998–1003.

[71] B. Bojovic, N. Baldo, J. Nin-Guerrero, and P. Dini,
“A Supervised Learning Approach to Cognitive Access
Point Selection,” in 2011 IEEE GLOBECOM Work-
shops (GC Wkshps). IEEE, 2011, pp. 1100–1105.

[72] D. Liu, Y. Zhang, and H. Zhang, “A Self-learning Call
Admission Control Scheme for CDMA Cellular Net-
works,” IEEE transactions on neural networks, vol. 16,
no. 5, pp. 1219–1228, 2005.

[73] B. Bojović, G. Quer, N. Baldo, and R. R. Rao,
“Bayesian And Neural Network Schemes for Call Ad-
mission Control in LTE Systems,” in 2013 IEEE Global
Communications Conference (GLOBECOM). IEEE,
2013, pp. 1246–1252.

[74] G. Quer, N. Baldo, and M. Zorzi, “Cognitive Call
Admission Control for VoIP over IEEE 802.11 Using
Bayesian Networks,” in 2011 IEEE Global Telecommu-
nications Conference-GLOBECOM 2011. IEEE, 2011,
pp. 1–6.

[75] R. Shi, J. Zhang, W. Chu, Q. Bao, X. Jin, C. Gong,
Q. Zhu, C. Yu, and S. Rosenberg, “MDP and Ma-
chine Learning-Based Cost-Optimization of Dynamic
Resource Allocation for Network Function Virtualiza-
tion,” in 2015 IEEE International Conference on Ser-
vices Computing. IEEE, 2015, pp. 65–73.

[76] A. Blenk, P. Kalmbach, P. Van Der Smagt, and
W. Kellerer, “Boost Online Virtual Network Embed-
ding: Using Neural Networks for Admission Control,”
in 2016 12th International Conference on Network and
Service Management (CNSM). IEEE, 2016, pp. 10–18.

[77] A. Adeel, H. Larijani, A. Javed, and A. Ahmadinia,
“Critical Analysis of Learning Algorithms in Random
Neural Network Based Cognitive Engine for LTE Sys-
tems,” in 2015 IEEE 81st Vehicular Technology Con-

ference (VTC Spring). IEEE, 2015, pp. 1–5.
[78] A. Testolin, M. Zanforlin, M. D. F. De Grazia,

D. Munaretto, A. Zanella, M. Zorzi, and M. Zorzi, “A
Machine Learning Approach to QoE-based Video Ad-
mission Control And Resource Allocation in Wireless
Systems,” in 2014 13th Annual Mediterranean Ad Hoc
Networking Workshop (MED-HOC-NET). IEEE, 2014,
pp. 31–38.

[79] S. Mignanti, A. Di Giorgio, and V. Suraci, “A Model
Based RL Admission Control Algorithm for Next Gen-
eration Networks,” in 2009 Eighth International Con-
ference on Networks. IEEE, 2009, pp. 191–196.

[80] H. Tong and T. X. Brown, “Adaptive Call Admission
Control Under Quality of Service Constraints: A Rein-
forcement Learning Solution,” IEEE Journal on selected
Areas in Communications, vol. 18, no. 2, pp. 209–221,
2000.

[81] J. Wang and Y. Qiu, “A New Call Admission Control
Strategy for LTE Femtocell Networks,” in 2nd interna-
tional conference on advances in computer science and
engineering, 2013, pp. 334–8.

[82] R. Mijumbi, J.-L. Gorricho, J. Serrat, M. Claeys,
F. De Turck, and S. Latré, “Design and Evaluation of
Learning Algorithms for Dynamic Resource Manage-
ment in Virtual Networks,” in 2014 IEEE network op-
erations and management symposium (NOMS). IEEE,
2014, pp. 1–9.

[83] Y. Wang, M. Martonosi, and L.-S. Peh, “Predicting Link
Quality Using Supervised Learning in Wireless Sensor
Networks,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 11, no. 3, pp. 71–83,
2007.

[84] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “A
Machine Learning-Based Framework for Building Ap-
plication Failure Prediction Models,” in 2015 IEEE
International Parallel and Distributed Processing Sym-
posium Workshop. IEEE, 2015, pp. 1072–1081.

[85] Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li,
L. Lou, and Z. Liu, “Failure Prediction Using Machine
Learning And Time Series in Optical Network,” Optics
Express, vol. 25, no. 16, pp. 18 553–18 565, 2017.

[86] U. S. Hashmi, A. Darbandi, and A. Imran, “Enabling
Proactive Self-healing by Data Mining Network Failure
Logs,” in 2017 international conference on computing,
networking and communications (ICNC). IEEE, 2017,
pp. 511–517.

[87] K. Qader, M. Adda, and M. Al-Kasassbeh, “Compar-
ative Analysis of Clustering Techniques in Network
Traffic Faults Classification,” International Journal of
Innovative Research in Computer and Communication
Engineering, vol. 5, no. 4, pp. 6551–6563, 2017.

[88] E. Kiciman and A. Fox, “Detecting Application-Level
Failures in Component-based Internet Services,” IEEE
transactions on neural networks, vol. 16, no. 5, pp.
1027–1041, 2005.

[89] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and
E. Brewer, “Failure Diagnosis Using Decision Trees,”
in International Conference on Autonomic Computing,

29

2004. Proceedings. IEEE, 2004, pp. 36–43.
[90] A. Snow, P. Rastogi, and G. Weckman, “Assessing

dependability of wireless networks using neural net-
works,” in MILCOM 2005-2005 IEEE Military Com-
munications Conference. IEEE, 2005, pp. 2809–2815.

[91] J. S. Baras, M. Ball, S. Gupta, P. Viswanathan, and
P. Shah, “Automated Network Fault Management,” in
MILCOM 97 MILCOM 97 Proceedings, vol. 3. IEEE,
1997, pp. 1244–1250.

[92] Y. Kumar, H. Farooq, and A. Imran, “Fault Prediction
And Reliability Analysis in A Real Cellular Network,”
in 2017 13th International Wireless Communications
and Mobile Computing Conference (IWCMC). IEEE,
2017, pp. 1090–1095.

[93] C. S. Hood and C. Ji, “Proactive Network-fault De-
tection [Telecommunications],” IEEE Transactions on
reliability, vol. 46, no. 3, pp. 333–341, 1997.

[94] P. Kogeda and J. I. Agbinya, “Prediction of Faults in
Cellular Networks Using Bayesian Network Model,” in
International conference on Wireless Broadband and
Ultra Wideband Communication. UTS ePress, 2006.

[95] M. Ruiz, F. Fresi, A. P. Vela, G. Meloni, N. Sambo,
F. Cugini, L. Poti, L. Velasco, and P. Castoldi, “Service-
triggered Failure Identification/Localization Through
Monitoring of Multiple Parameters,” in ECOC 2016;
42nd European Conference on Optical Communication.
VDE, 2016, pp. 1–3.

[96] R. M. Khanafer, B. Solana, J. Triola, R. Barco, L. Molt-
sen, Z. Altman, and P. Lazaro, “Automated Diagnosis
for UMTS Networks Using Bayesian Network Ap-
proach,” IEEE Transactions on vehicular technology,
vol. 57, no. 4, pp. 2451–2461, 2008.

[97] A. I. Moustapha and R. R. Selmic, “Wireless Sensor
Network Modeling Using Modified Recurrent Neural
Networks: Application to Fault Detection,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 57,
no. 5, pp. 981–988, 2008.

[98] M. S. Mushtaq, B. Augustin, and A. Mellouk, “Empiri-
cal Study Based on Machine Learning Approach to As-
sess The QoS/QoE Correlation,” in 2012 17th European
Conference on Networks and Optical Communications.
IEEE, 2012, pp. 1–7.

[99] P. Charonyktakis, M. Plakia, I. Tsamardinos, and M. Pa-
padopouli, “On User-Centric Modular QoE Prediction
for VoIP Based on Machine-Learning Algorithms,”
IEEE Transactions on mobile computing, vol. 15, no. 6,
pp. 1443–1456, 2015.

[100] E. Demirbilek and J.-C. Grégoire, “Machine Learning–
Based Parametric Audiovisual Quality Prediction Mod-
els for Real-Time Communications,” ACM Transactions
on Multimedia Computing, Communications, and Appli-
cations (TOMM), vol. 13, no. 2, pp. 1–25, 2017.

[101] V. A. Machado, C. N. Silva, R. S. Oliveira, A. M.
Melo, M. Silva, C. R. Francês, J. C. Costa, N. L.
Vijaykumar, and C. M. Hirata, “A New Proposal to
Provide Estimation of QoS And QoE over WiMAX
Networks: An Approach Based on Computational Intel-
ligence And Discrete-event Simulation,” in 2011 IEEE

Third Latin-American Conference on Communications.
IEEE, 2011, pp. 1–6.

[102] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwi-
jck, and F. De Turck, “Design of A Q-Learning-based
Client Quality Selection Algorithm for HTTP Adaptive
Video Streaming,” in Adaptive and Learning Agents
Workshop, part of AAMAS2013 (ALA-2013), 2013, pp.
30–37.

[103] M. Claeys, S. Latre, J. Famaey, and F. De Turck, “De-
sign And Evaluation of A Self-learning HTTP Adaptive
Video Streaming Client,” IEEE communications letters,
vol. 18, no. 4, pp. 716–719, 2014.

[104] M. Panda, A. Abraham, and M. R. Patra, “A Hybrid
Intelligent Approach for Network Intrusion Detection,”
Procedia Engineering, vol. 30, pp. 1–9, 2012.

[105] S. Peddabachigari, A. Abraham, C. Grosan, and
J. Thomas, “Modeling Intrusion Detection System Us-
ing Hybrid Intelligent Systems,” Journal of network
and computer applications, vol. 30, no. 1, pp. 114–132,
2007.

[106] D. S. Kim, H.-N. Nguyen, and J. S. Park, “Genetic
Algorithm to Improve SVM Based Network Intrusion
Detection System,” in 19th International Conference
on Advanced Information Networking and Applications
(AINA’05) Volume 1 (AINA papers), vol. 2. IEEE,
2005, pp. 155–158.

[107] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion
Detection Using Neural Networks and Support Vector
Machines,” in Proceedings of the 2002 International
Joint Conference on Neural Networks. IJCNN’02 (Cat.
No. 02CH37290), vol. 2. IEEE, 2002, pp. 1702–1707.

[108] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive Bayes
vs Decision Trees in Intrusion Detection Systems,” in
Proceedings of the 2004 ACM symposium on Applied
computing, 2004, pp. 420–424.

[109] Y. Li and L. Guo, “An Active Learning Based TCM-
KNN Algorithm for Supervised Network Intrusion De-
tection,” Computers & security, vol. 26, no. 7-8, pp.
459–467, 2007.

[110] A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Net-
work Anomaly Detection by Cascading K-Means Clus-
tering and C4.5 Decision Tree Algorithm,” Procedia
Engineering, vol. 30, pp. 174–182, 2012.

[111] Z.-S. Pan, S.-C. Chen, G.-B. Hu, and D.-Q. Zhang, “Hy-
brid Neural Network and C4.5 for Misuse Detection,”
in Proceedings of the 2003 International Conference
on Machine Learning and Cybernetics (IEEE Cat. No.
03EX693), vol. 4. IEEE, 2003, pp. 2463–2467.

[112] W. Hu, W. Hu, and S. Maybank, “AdaBoost-Based
Algorithm for Network Intrusion Detection,” IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 38, no. 2, pp. 577–583, 2008.

[113] J. Zhang and M. Zulkernine, “Anomaly Based Net-
work Intrusion Detection with Unsupervised Outlier
Detection,” in 2006 IEEE International Conference on
Communications, vol. 5. IEEE, 2006, pp. 2388–2393.

[114] B. Pfahringer, “Winning the KDD99 Classification
Cup: Bagged Boosting,” ACM SIGKDD Explorations

30

Newsletter, vol. 1, no. 2, pp. 65–66, 2000.
[115] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature

Deduction and Ensemble Design of Intrusion Detection
Systems,” Computers & security, vol. 24, no. 4, pp.
295–307, 2005.

[116] J. Cannady, “Artificial Neural Networks for Misuse
Detection,” in Proceedings of the 1998 National Infor-
mation Systems Security Conference (NISSC’98), 1998,
pp. 443–456.

[117] M. Moradi and M. Zulkernine, “A Neural Network
Based System for Intrusion Detection and Classification
of Attacks,” in Proceedings of the IEEE international
conference on advances in intelligent systems-theory
and applications. IEEE Lux-embourg-Kirchberg, Lux-
embourg, 2004, pp. 15–18.

[118] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long Short
Term Memory Recurrent Neural Network Classifier for
Intrusion Detection,” in 2016 International Conference
on Platform Technology and Service (PlatCon). IEEE,
2016, pp. 1–5.

[119] A. Servin and D. Kudenko, “Multi-Agent Reinforce-
ment Learning for Intrusion Detection: A Case Study
and Evaluation,” in German Conference on Multiagent
System Technologies. Springer, 2008, pp. 159–170.

[120] M. Sánchez-Fernández, M. de Prado-Cumplido,
J. Arenas-Garcı́a, and F. Pérez-Cruz, “SVM
Multiregression for Nonlinear Channel Estimation
in Multiple-input Multiple-output Systems,” IEEE
transactions on signal processing, vol. 52, no. 8, pp.
2298–2307, 2004.

[121] P. Haffner, G. Tur, and J. H. Wright, “Optimizing
SVMs for Complex Call Classification,” in 2003 IEEE
International Conference on Acoustics, Speech, and Sig-
nal Processing, 2003. Proceedings.(ICASSP’03)., vol. 1.
IEEE, 2003, pp. I–I.

[122] Y. Zhang, J. Wen, G. Yang, Z. He, and X. Luo, “Air-
to-air Path Loss Prediction Based on Machine Learning
Methods in Urban Environments,” Wireless Communi-
cations and Mobile Computing, vol. 2018, 2018.

[123] D. F. F. Baptista, R. Ferrari, and R. Attux, “Channel
Equalization Based on Decision Trees,” Journal of
Communication and Information Systems, vol. 35, no. 1,
pp. 150–161, 2020.

[124] S. Luan, Y. Gao, W. Chen, N. Yu, and Z. Zhang, “Auto-
matic Modulation Classification: Decision Tree Based
on Error Entropy and Global-Local Feature-Coupling
Network Under Mixed Noise and Fading Channels,”
IEEE Wireless Communications Letters, vol. 11, no. 8,
pp. 1703–1707, 2022.

[125] Y. Wu, Y. Wang, J. Huang, C.-X. Wang, and C. Huang,
“A Weighted Random Forest Based Positioning Algo-
rithm for 6G Indoor Communications,” in 2022 IEEE
96th Vehicular Technology Conference (VTC2022-Fall).
IEEE, 2022, pp. 1–6.

[126] T. O’Shea, K. Karra, and T. C. Clancy, “Learning
Approximate Neural Estimators for Wireless Channel
State Information,” in 2017 IEEE 27th international
workshop on machine learning for signal processing

(MLSP). IEEE, 2017, pp. 1–7.
[127] J. Huang, C.-X. Wang, L. Bai, J. Sun, Y. Yang, J. Li,

O. Tirkkonen, and M.-T. Zhou, “A Big Data Enabled
Channel Model for 5G Wireless Communication Sys-
tems,” IEEE Transactions on Big Data, vol. 6, no. 2,
pp. 211–222, 2018.

[128] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep Learning-
based Channel Estimation for Beamspace mmWave
Massive MIMO Systems,” IEEE Wireless Communica-
tions Letters, vol. 7, no. 5, pp. 852–855, 2018.

[129] T. O’shea and J. Hoydis, “An Introduction to Deep
Learning for the Physical Layer,” IEEE Transactions
on Cognitive Communications and Networking, vol. 3,
no. 4, pp. 563–575, 2017.

[130] G. Kechriotis, E. Zervas, and E. S. Manolakos, “Using
Recurrent Neural Networks for Adaptive Communi-
cation Channel Equalization,” IEEE transactions on
Neural Networks, vol. 5, no. 2, pp. 267–278, 1994.

[131] D.-C. Park and T.-K. J. Jeong, “Complex-bilinear Re-
current Neural Network for Equalization of A Digital
Satellite Channel,” IEEE Transactions on Neural Net-
works, vol. 13, no. 3, pp. 711–725, 2002.

[132] M. Ghavamzadeh, S. Mannor, J. Pineau, A. Tamar
et al., “Bayesian Reinforcement Learning: A Survey,”
Foundations and Trends® in Machine Learning, vol. 8,
no. 5-6, pp. 359–483, 2015.

[133] S. M. Aldossari and K.-C. Chen, “Machine Learning
for Wireless Communication Channel Modeling: An
Overview,” Wireless Personal Communications, vol.
106, pp. 41–70, 2019.

[134] U. Cisco, “Cisco Annual Internet Report
(2018–2023) White Paper,” Online](accessed
March 26, 2021) https://www. cisco.
com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/whitepaper-c11-
741490. html, 2020.

[135] D. Gutierrez, “The Intelligent Use Of Big Data On An
Industrial Scale,” 2017.

[136] R. Meulen, “Gartner Says 8.4 Billion Connected
”Things” Will Be in Use in 2017, Up 31 Percent From
2016,” Gartner Letzte Aktualisierung, vol. 7, p. 2017,
2017.

[137] P. Domingos and M. Pazzani, “On the Optimality of
the Simple Bayesian Classifier under Zero-One Loss,”
Machine learning, vol. 29, no. 2, pp. 103–130, 1997.

[138] J. N. Morgan and J. A. Sonquist, “Problems in the
Analysis of Survey Data, and a Proposal,” Journal of
the American statistical association, vol. 58, no. 302,
pp. 415–434, 1963.

[139] C. Cortes and V. Vapnik, “Support-Vector Networks,”
Machine learning, vol. 20, no. 3, pp. 273–297, 1995.

[140] K. Bennett and A. Demiriz, “Semi-Supervised Support
Vector Machines,” Advances in Neural Information pro-
cessing systems, vol. 11, 1998.

[141] E. Fix and J. L. Hodges, “Discriminatory Analysis.
Nonparametric Discrimination: Consistency Properties,”
International Statistical Review/Revue Internationale de
Statistique, vol. 57, no. 3, pp. 238–247, 1989.

31

[142] M. A. Kramer, “Nonlinear Principal Component Anal-
ysis Using Autoassociative Neural Networks ,” AIChE
journal, vol. 37, no. 2, pp. 233–243, 1991.

[143] C. J. C. H. Watkins, “Learning from Delayed Rewards,”
1989.

[144] G. A. Rummery and M. Niranjan, On-Line Q-Learning
Using Connectionist Systems. Citeseer, 1994, vol. 37.

[145] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan,
“Machine Learning in Wireless Sensor Networks: Al-
gorithms, Strategies, and Applications,” IEEE Commu-
nications Surveys & Tutorials, vol. 16, no. 4, pp. 1996–
2018, 2014.

[146] P. V. Klaine, M. A. Imran, O. Onireti, and R. D.
Souza, “A Survey of Machine Learning Techniques
Applied to Self-Organizing Cellular Networks,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2392–2431, 2017.

[147] A. Aljuhani, “Machine Learning Approaches for Com-
bating Distributed Denial of Service Attacks in Modern
Networking Environments,” IEEE Access, vol. 9, pp.
42 236–42 264, 2021.

[148] N. McKeown, “Software-Defined Networking,” 28th
Annual Joint Conference of the IEEE Computer and
Communication Societies (INFOCOM), vol. 17, no. 2,
pp. 30–32, 2009.

[149] N. Feamster, J. Rexford, and E. Zegura, “The Road to
SDN: An Intellectual History of Programmable Net-
works,” SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 87–98, Apr. 2014.

[150] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore,
“Reconfigurable Network Systems and Software-
Defined Networking,” Proceedings of the IEEE, vol.
103, no. 7, pp. 1102–1124, 2015.

[151] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz, “Forward-
ing Metamorphosis: Fast Programmable Match-Action
Processing in Hardware for SDN,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp.
99–110, 2013.

[152] N. McKeown, PISA: Protocol Independent Switch Ar-
chitecture, 2015, P4 Workshop.

[153] P4 Language Consortium, “P4 16 Portable Switch Ar-
chitecture (PSA),” 2018.

[154] “P4 Portable NIC Architecture (PNA),” May 2021,
https://p4.org/p4-spec/docs/PNA.html [Online; accessed
November 2023].

[155] “Version 1.0 Switch Architecture Model,” Web-
site, https://github.com/p4lang/p4c/blob/main/p4inclu
de/v1model.p4 [Online; accessed November 2023].

[156] “Open Tofino,” https://github.com/barefootnetworks/
Open-Tofino [Online; accessed November 2023].

[157] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-
gaftik, A. Berger, G. Mendelson, M. Alizadeh, S.-
T. Chuang, I. Keslassy et al., “dRMT: Disaggregated
Programmable Switching,” in Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, 2017, pp. 1–14.

[158] “p4c,” https://github.com/p4lang/p4c [Online; accessed

November 2023].
[159] “The Reference P4 Software Switch,” https://github.c

om/p4lang/behavioral-model [Online; accessed Novem-
ber 2023].

[160] T. P. Morgan, Spectrum-4 Ethernet Leaps To 800G
With Nvidia Circuits, The Next Platform, 2022,
https://www.nextplatform.com/2022/04/01/spectrum
-4-ethernet-leaps-to-800-gb-sec-with-nvidia-circuits/
[Online, accessed 2023].

[161] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Var-
gaftik, Y. Ben-Itzhak, and N. Zilberman, “Automat-
ing In-Network Machine Learning,” arXiv preprint
arXiv:2205.08824, 2022.

[162] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu,
and M. Mitzenmacher, “PINT: Probabilistic In-Band
Network Telemetry,” in Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,
2020, pp. 662–680.

[163] P. Wintermeyer, M. Apostolaki, A. Dietmüller, and
L. Vanbever, “P2GO: P4 Profile-Guided Optimizations,”
in Proceedings of the 19th ACM Workshop on Hot
Topics in Networks, 2020, pp. 146–152.

[164] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li,
Z. Zheng, L. Zhu, Z. Shen, Y. Xi et al., “Flow Event
Telemetry on Programmable Data Plane,” in Proceed-
ings of the Annual conference of the ACM Special Inter-
est Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, 2020, pp. 76–89.

[165] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav,
N. Foster, and H. Weatherspoon, “P4FPGA: A Rapid
Prototyping Framework for P4,” in Proceedings of the
Symposium on SDN Research, 2017, pp. 122–135.

[166] N. Zilberman, Y. Audzevich, G. Covington, and A. W.
Moore, “NetFPGA SUME: Toward 100 Gbps as Re-
search Commodity,” IEEE Micro, vol. 34, no. 5, pp.
32–41, September 2014.

[167] G. Brebner, “Expanding The P4 Universe,” Web-
site, https://opennetworking.org/wp-content/uploads
/2022/05/Expanding-the-P4-universe.pdf [Online; ac-
cessed November 2023].

[168] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel,
and S. Laki, “T4P4S: A Target-independent Compiler
for Protocol-independent Packet Processors,” in 2018
IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). IEEE, 2018,
pp. 1–8.

[169] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. She-
lar et al., “The Design and Implementation of Open
vSwitch,” in 12th USENIX symposium on networked
systems design and implementation (NSDI 15), 2015,
pp. 117–130.

[170] S. Laki, R. Stoyanov, D. Kis, R. Soulé, P. Vörös,
and N. Zilberman, “P4Pi: P4 on Raspberry Pi for
Networking Education,” ACM SIGCOMM Computer

https://p4.org/p4-spec/docs/PNA.html
https://p4.org/p4-spec/docs/PNA.html
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://github.com/p4lang/p4c
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.nextplatform.com/2022/04/01/spectrum-4-ethernet-leaps-to-800-gb-sec-with-nvidia-circuits/
https://www.nextplatform.com/2022/04/01/spectrum-4-ethernet-leaps-to-800-gb-sec-with-nvidia-circuits/
https://www.nextplatform.com/2022/04/01/spectrum-4-ethernet-leaps-to-800-gb-sec-with-nvidia-circuits/
https://opennetworking.org/wp-content/uploads/2022/05/Expanding-the-P4-universe.pdf
https://opennetworking.org/wp-content/uploads/2022/05/Expanding-the-P4-universe.pdf

32

Communication Review, vol. 51, no. 3, pp. 17–21, 2021.
[171] “P4runtime,” https://p4.org/p4-spec/p4runtime/main/

P4Runtime-Spec.html [Online; accessed November
2023].

[172] Y. Tokusashi, H. Matsutani, and N. Zilberman, “LaKe:
The Power of In-Network Computing,” in 2018 Interna-
tional Conference on ReConFigurable Computing and
FPGAs (ReConFig). IEEE, 2018, pp. 1–8.

[173] V. Bahl, “Unlocking the potential of in-network
computing for telecommunication workloads,” Website,

https://azure.microsoft.com/en-us/blog/unlocking-the
-potential-of-in-network-computing-for-telecommuni
cation-workloads/ [Online; accessed November 2023].

[174] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar,
and S. Seshan, “Tea: Enabling state-intensive network
functions on programmable switches,” in Proceedings of
the 2020 ACM SIGCOMM Conference, 2020, pp. 90–
106.

[175] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica, “NetCache: Balancing Key-Value
Stores with Fast In-Network Caching,” in Proceedings
of the 26th Symposium on Operating Systems Princi-
ples, 2017, pp. 121–136.

[176] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zil-
berman, H. Weatherspoon, M. Canini, F. Pedone, and
R. Soulé, “P4xos: Consensus as a Network Service,”
IEEE/ACM Transactions on Networking, vol. 28, no. 4,
pp. 1726–1738, 2020.

[177] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica, “NetChain: Scale-Free Sub-RTT
Coordination,” in 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18), 2018, pp. 35–49.

[178] M. Liu, D. Gao, G. Liu, J. He, L. Jin, C. Zhou, and
F. Yang, “Learning Based Adaptive Network Immune
Mechanism to Defense Eavesdropping Attacks,” IEEE
Access, vol. 7, pp. 182 814–182 826, 2019.

[179] J. Bai, M. Zhang, G. Li, C. Liu, M. Xu, and H. Hu,
“FastFE: Accelerating ML-based Traffic Analysis with
Programmable Switches,” in Proceedings of the Work-
shop on Secure Programmable Network Infrastructure,
2020, pp. 1–7.

[180] D. Barradas, N. Santos, L. Rodrigues, S. Signorello,
F. M. Ramos, and A. Madeira, “FlowLens: Enabling
Efficient Flow Classification for ML-based Network
Security Applications.”

[181] Q. Li, J. Zhang, T. Pan, T. Huang, and Y. Liu, “Data-
driven Routing Optimization based on Programmable
Data Plane,” in 2020 29th International Conference
on Computer Communications and Networks (ICCCN).
IEEE, 2020, pp. 1–9.

[182] Y. Mi and A. Wang, “ML-pushback: Machine learning
based pushback defense against DDoS,” in Proceedings
of the 15th International Conference on emerging Net-
working EXperiments and Technologies, 2019, pp. 80–
81.

[183] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing,
and J. Huang, “Accelerating Distributed Reinforce-

ment learning with In-Switch Computing,” in 2019
ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2019, pp. 279–
291.

[184] F. Yang, Z. Wang, X. Ma, G. Yuan, and X. An,
“SwitchAgg: A Further Step Towards In-Network Com-
puting,” in 2019 IEEE Intl Conf on Parallel & Dis-
tributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Commu-
nications, Social Computing & Networking (ISPA/BD-
Cloud/SocialCom/SustainCom). IEEE, 2019, pp. 36–
45.

[185] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kal-
nis, C. Kim, A. Krishnamurthy, M. Moshref, D. R.
Ports, and P. Richtárik, “Scaling Distributed Machine
Learning with In-Network Aggregation,” arXiv preprint
arXiv:1903.06701, 2019.

[186] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella,
and M. M. Swift, “ATP: In-network Aggregation for
Multi-tenant Learning,” in USENIX NSDI, 2021, pp.
741–761.

[187] F. Musumeci, A. C. Fidanci, F. Paolucci, F. Cugini,
and M. Tornatore, “Machine-Learning-Enabled DDoS
Attacks Detection in P4 Programmable Networks,”
Journal of Network and Systems Management, vol. 30,
pp. 1–27, 2022.

[188] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Ben-
soussane, A. Bernabeu, S. Vargaftik, Y. Ben-Itzhak, and
N. Zilberman, “IIsy: Practical In-Network Classifica-
tion,” arXiv preprint arXiv:2205.08243, 2022.

[189] C. Zheng, H. Tang, M. Zang, X. Hong, A. Feng,
L. Tassiulas, and N. Zilberman, “DINC: Toward Dis-
tributed In-Network Computing,” in Proceedings of
ACM CoNEXT’23, 2023.

[190] T. Swamy, A. Zulfiqar, L. Nardi, M. Shahbaz, and
K. Olukotun, “Homunculus: Auto-Generating Efficient
Data-Plane ML Pipelines for Datacenter Networks,” in
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, 2023, pp. 329–342.

[191] G. Siracusano and R. Bifulco, “In-network Neural Net-
works,” arXiv preprint arXiv:1801.05731, 2018.

[192] G. Siracusano, D. Sanvito, S. Galea, and R. Bifulco,
“Deep Learning Inference on Commodity Network
Interface Cards,” in Proc. Workshop Syst. ML Open
Source Softw. NeurIPS, 2018, pp. 1–8.

[193] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler,
and L. Vanbever, “pForest: In-Network Inference with
Random Forests,” arXiv preprint arXiv:1909.05680,
2019.

[194] J.-H. Lee and K. Singh, “SwitchTree: In-network Com-
puting and Traffic Analyses with Random Forests,”
Neural Computing and Applications, pp. 1–12, 2020.

[195] T. Swamy, A. Rucker, M. Shahbaz, and K. Olukotun,
“Taurus: An Intelligent Data Plane,” arXiv preprint
arXiv:2002.08987, 2020.

[196] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and
K. Olukotun, “Taurus: A Data Plane Architecture for

https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://azure.microsoft.com/en-us/blog/unlocking-the-potential-of-in-network-computing-for-telecommunication-workloads/
https://azure.microsoft.com/en-us/blog/unlocking-the-potential-of-in-network-computing-for-telecommunication-workloads/
https://azure.microsoft.com/en-us/blog/unlocking-the-potential-of-in-network-computing-for-telecommunication-workloads/

33

Per-Packet ML,” in Proceedings of the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022,
pp. 1099–1114.

[197] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas,
“Line-Speed and Scalable Intrusion Detection at the
Network Edge via Federated Learning,” in 2020 IFIP
Networking Conference (Networking). IEEE, 2020, pp.
352–360.

[198] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh,
H. Haddadi, G. Antichi, and R. Bifulco, “Run-
ning Neural Networks on the NIC,” arXiv preprint
arXiv:2009.02353, 2020.

[199] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh,
G. Antichi, P. Costa, H. Haddadi, and R. Bifulco, “Re-
architecting Traffic Analysis with Neural Network Inter-
face Cards,” in 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), 2022,
pp. 513–533.

[200] B. L. Coelho, “Detecting DoS Attacks Utilizing Ran-
dom Forests in Programmable Data Planes,” 2020.

[201] C. Zheng and N. Zilberman, “Planter: Seeding Trees
Within Switches,” in Proceedings of the SIGCOMM’21
Poster and Demo Sessions, 2021, pp. 12–14.

[202] B. M. Xavier, R. S. Guimarães, G. Comarela,
and M. Martinello, “Programmable Switches for
In-Networking Classification,” in IEEE INFOCOM
2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[203] Z. Zhong, W. Wang, M. Ghobadi, A. Sludds,
R. Hamerly, L. Bernstein, and D. Englund, “IOI: In-
network Optical Inference,” 2021.

[204] R. Friedman, O. Goaz, and O. Rottenstreich, “Clus-
treams: Data Plane Clustering,” in ACM SIGCOMM
Symposium on SDN Research (SOSR) (SOSR ’21),
2021.

[205] H. Siddique, “Towards In-Network Image Classification
for Latency-Critical IoT Applications,” 2021.

[206] H. Siddique, M. Neves, C. Kuzniar, and I. Haque,
“Towards Network-accelerated ML-based Distributed
Computer Vision Systems,” 2021.

[207] K. A. Simpson and D. P. Pezaros, “Online RL in the
Programmable Dataplane with OPaL,” in 17th Inter-
national Conference on emerging Networking EXper-
iments and Technologies (CoNEXT ’21), 2021.

[208] Simpson, Kyle A and Pezaros, Dimitrios P, “Revisiting
the Classics: Online RL in the Programmable Data-
plane,” pp. 1–10, 2022.

[209] C. Zheng, B. Rienecker, and N. Zilberman, “QCMP:
Load Balancing via In-Network Reinforcement Learn-
ing,” in Proceedings of the 2nd ACM SIGCOMM Work-
shop on Future of Internet Routing & Addressing, 2023.

[210] F. Paolucci, L. De Marinis, P. Castoldi, and F. Cugini,
“Demonstration of P4 Neural Network Switch,” in 2021
Optical Fiber Communications Conference and Exhibi-
tion (OFC). IEEE, 2021, pp. 1–3.

[211] K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno,
“INC: In-Network Classification of Botnet Propagation

at Line Rate,” in European Symposium on Research in
Computer Security. Springer, 2022, pp. 551–569.

[212] X. Hong, C. Zheng, S. Zohren, and N. Zilberman, “Lin-
net: Limit Order Books Within Switches,” in Proceed-
ings of the SIGCOMM’22 Poster and Demo Sessions,
2022, pp. 37–39.

[213] X. Hong, C. Zheng, S. Zohren, and N. Zilberman,
“LOBIN: In-Network Machine Learning for Limit Or-
der Books,” in 2023 IEEE 24th International Con-
ference on High Performance Switching and Routing
(HPSR). IEEE, 2023, pp. 159–166.

[214] M. Zang, C. Zheng, R. Stoyanov, L. Dittmann, and
N. Zilberman, “P4Pir: In-Network Analysis for Smart
IoT Gateways,” in Proceedings of the SIGCOMM’22
Poster and Demo Sessions, 2022, pp. 46–48.

[215] M. Zang, C. Zheng, L. Dittmann, and N. Zilberman,
“Towards Continuous Threat Defense: In-Network Traf-
fic Analysis for IoT Gateways,” IEEE Internet of Things
Journal, 2023.

[216] M. Zang, C. Zheng, L. Dittmann, and N. Zilberman,
“Advanced threat defense with in-network traffic anal-
ysis for iot gateways,” MobiUK, 2023.

[217] M. Zang, C. Zheng, T. Koziak, N. Zilberman, and
L. Dittmann, “Federated Learning-Based In-Network
Traffic Analysis on IoT Edge,” Security for IoT Net-
works and Devices in 6G (Sec4IoT), IFIP Networking,
2023.

[218] B. M. Xavier, R. S. Guimarães, G. Comarela, and
M. Martinello, “MAP4: A Pragmatic Framework for
In-Network Machine Learning Traffic Classification,”
IEEE Transactions on Network and Service Manage-
ment, 2022.

[219] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan,
“Mousika: Enable General In-Network Intelligence in
Programmable Switches by Knowledge Distillation,” in
IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 1938–1947.

[220] G. Xie, Q. Li, G. Duan, J. Lin, Y. Dong, Y. Jiang,
D. Zhao, and Y. Yang, “Empowering In-Network Classi-
fication in Programmable Switches by Binary Decision
Tree and Knowledge Distillation,” IEEE/ACM Transac-
tions on Networking, 2023.

[221] A. T.-J. Akem, M. Gucciardo, M. Fiore et al.,
“Flowrest: Practical Flow-Level Inference in Pro-
grammable Switches with Random Forests,” in IEEE In-
ternational Conference on Computer Communications,
2023.

[222] A. Ganesan and K. Sarac, “Attack Detection and Mit-
igation using Intelligent Data Planes in SDNs,” in
GLOBECOM 2022-2022 IEEE Global Communications
Conference. IEEE, 2022, pp. 1–6.

[223] N. Moustafa. (2015) The UNSW-NB15 Dataset. https://
research.unsw.edu.au/projects/unsw-nb15-dataset. [On-
line; accessed November 2023].

[224] M. Courbariaux, Y. Bengio, and J.-P. David, “Bina-
ryConnect: Training Deep Neural Networks with Binary
Weights During Propagations,” in Advances in neural
information processing systems, 2015, pp. 3123–3131.

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset

34

[225] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Con-
strained to +1 or -1,” arXiv preprint arXiv:1602.02830,
2016.

[226] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks,” in European confer-
ence on computer vision. Springer, 2016, pp. 525–542.

[227] M. Hamid, “Tile-Coding: An Efficient Sparse-
Coding Method for Real-Valued Data,” Website,
https://github.com/criteo-research/tf-tile/blob/master/do
c/Tile-Coding-An-Efficient-Sparse-Coding-Method-f
or-Real-Valued-Data.md [Online; accessed November
2023].

[228] H. Samet, “The Quadtree and Related Hierarchical Data
Structures,” ACM Computing Surveys (CSUR), vol. 16,
no. 2, pp. 187–260, 1984.

[229] K. Das and R. N. Behera, “A Survey on Machine
Learning: Concept, Algorithms and Applications,” In-
ternational Journal of Innovative Research in Computer
and Communication Engineering, vol. 5, no. 2, pp.
1301–1309, 2017.

[230] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard,
and C.-J. Lin, “Training and Testing Low-degree Poly-
nomial Data Mappings via Linear SVM,” Journal of
Machine Learning Research, vol. 11, no. 4, 2010.

[231] A. Patle and D. S. Chouhan, “SVM Kernel Functions
for Classification,” in 2013 International Conference
on Advances in Technology and Engineering (ICATE).
IEEE, 2013, pp. 1–9.

[232] S. Suthaharan, “Support Vector Machine,” in Machine
learning models and algorithms for big data classifica-
tion. Springer, 2016, pp. 207–235.

[233] Â. C. Lapolli, J. A. Marques, and L. P. Gaspary,
“Offloading Real-time DDoS Attack Detection to Pro-
grammable Data Planes,” in 2019 IFIP/IEEE Sympo-
sium on Integrated Network and Service Management
(IM). IEEE, 2019, pp. 19–27.

[234] S.-C. Wang, “Artificial Neural Network,” in Interdis-
ciplinary computing in java programming. Springer,
2003, pp. 81–100.

[235] M. Anthony, P. L. Bartlett, and P. L. Bartlett, Neural
Network Learning: Theoretical Foundations. cam-
bridge university press Cambridge, 1999, vol. 9.

[236] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe,
“Binary Neural Networks: A Survey,” Pattern Recogni-
tion, vol. 105, p. 107281, 2020.

[237] Y. LeCun, Y. Bengio et al., “Convolutional Networks
for Images, Speech, and Time-Series,” The handbook
of brain theory and neural networks, vol. 3361, no. 10,
p. 1995, 1995.

[238] E. Fix, Discriminatory analysis: nonparametric dis-
crimination, consistency properties. USAF school of
Aviation Medicine, 1985, vol. 1.

[239] N. S. Altman, “An Introduction to Kernel and Nearest-
Neighbor Nonparametric Regression,” The American
Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[240] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody,
and S. D. Brown, “An Introduction to Decision Tree
Modeling,” Journal of Chemometrics: A Journal of the
Chemometrics Society, vol. 18, no. 6, pp. 275–285,
2004.

[241] S. R. Safavian and D. Landgrebe, “A Survey of Deci-
sion Tree Classifier Methodology,” IEEE transactions
on systems, man, and cybernetics, vol. 21, no. 3, pp.
660–674, 1991.

[242] D. Opitz and R. Maclin, “Popular Ensemble Methods:
An Empirical Study,” Journal of artificial intelligence
research, vol. 11, pp. 169–198, 1999.

[243] T.-H. Lee, A. Ullah, and R. Wang, “Bootstrap Aggregat-
ing and Random Forest,” in Macroeconomic Forecasting
in the Era of Big Data. Springer, 2020, pp. 389–429.

[244] R. E. Schapire, “A Brief Introduction to Boosting,” in
Ijcai, vol. 99. Citeseer, 1999, pp. 1401–1406.

[245] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree
Boosting System,” in Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, 2016, pp. 785–794.

[246] F. Bayes, “An Essay Towards Solving A Problem in
The Doctrine of Chances,” Biometrika, vol. 45, no. 3-4,
pp. 296–315, 1958.

[247] J. A. Hartigan and M. A. Wong, “Algorithm AS 136:
A K-Means Clustering Algorithm,” Journal of the royal
statistical society. series c (applied statistics), vol. 28,
no. 1, pp. 100–108, 1979.

[248] S. Wold, K. Esbensen, and P. Geladi, “Principal Com-
ponent Analysis,” Chemometrics and intelligent labora-
tory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[249] T. Kohonen, “The self-organizing map,” Proceedings of
the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990.

[250] A. Ng et al., “Sparse autoencoder,” CS294A Lecture
notes, vol. 72, no. 2011, pp. 1–19, 2011.

[251] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation
Forest,” in 2008 eighth ieee international conference
on data mining. IEEE, 2008, pp. 413–422.

[252] X. Zhu and A. B. Goldberg, “Introduction to Semi-
Supervised Learning,” Synthesis lectures on artificial
intelligence and machine learning, vol. 3, no. 1, pp.
1–130, 2009.

[253] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Re-
inforcement Learning: A Survey,” Journal of artificial
intelligence research, vol. 4, pp. 237–285, 1996.

[254] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Play-
ing Atari with Deep Reinforcement Learning,” arXiv
preprint arXiv:1312.5602, 2013.

[255] J. Liu, F. Gao, and X. Luo, “Survey of Deep Reinforce-
ment Learning Based on Value Function and Policy
Gradient,” Chinese Journal of Computers, vol. 42, no. 6,
pp. 1406–1438, 2019.

[256] C. J. Watkins and P. Dayan, “Q-learning,” Machine
learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[257] “APS Networks 100GbE Barefoot Tofino-
based Network Switch,” Website, https:
//www.opencompute.org/products/85/aps-netwo

https://github.com/criteo-research/tf-tile/blob/master/doc/Tile-Coding-An-Efficient-Sparse-Coding-Method-for-Real-Valued-Data.md
https://github.com/criteo-research/tf-tile/blob/master/doc/Tile-Coding-An-Efficient-Sparse-Coding-Method-for-Real-Valued-Data.md
https://github.com/criteo-research/tf-tile/blob/master/doc/Tile-Coding-An-Efficient-Sparse-Coding-Method-for-Real-Valued-Data.md
https://github.com/criteo-research/tf-tile/blob/master/doc/Tile-Coding-An-Efficient-Sparse-Coding-Method-for-Real-Valued-Data.md
https://www.opencompute.org/products/85/aps-networks-100gbe-barefoot-tofino-based-network-switch
https://www.opencompute.org/products/85/aps-networks-100gbe-barefoot-tofino-based-network-switch

35

rks-100gbe-barefoot-tofino-based-network-switch
[Online; accessed November 2023].

[258] “Intel® Tofino 2 12.8 Tbps, 20 stage, 4 pipelines,”
Website, https://www.intel.com/content/www/us/e
n/products/sku/218648/intel-tofino-2-12-8-tbps-20-s
tage-4-pipelines/specifications.html#tofino [Online;
accessed November 2023].

[259] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-
Pacheco, J. Moulierac, and G. Urvoy-Keller, “Too Many
SDN Rules? Compress Them with MINNIE,” in 2015
IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2015, pp. 1–7.

[260] M. Kobayashi, T. Murase, and A. Kuriyama, “A
Longest Prefix Match Search Engine for Multi-Gigabit
IP Processing,” in 2000 IEEE international conference
on communications. ICC 2000. Global convergence
through communications. Conference record, vol. 3.
IEEE, 2000, pp. 1360–1364.

[261] V. Rios and G. Varghese, “MashUp: Scaling TCAM-
based IP Lookup to Larger Databases by Tiling Trees,”
arXiv preprint arXiv:2204.09813, 2022.

[262] K. Kannan and S. Banerjee, “Compact TCAM: Flow
Entry Compaction in TCAM for Power Aware SDN,” in
International conference on distributed computing and
networking. Springer, 2013, pp. 439–444.

[263] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit Rate
Packet Pattern-Matching Using TCAM,” in Proceedings
of the 12th IEEE International Conference on Network
Protocols, 2004. ICNP 2004. IEEE, 2004, pp. 174–
183.

[264] A. Bremler-Barr and D. Hendler, “Space-Efficient
TCAM-Based Classification Using Gray Coding,” IEEE
Transactions on Computers, vol. 61, no. 1, pp. 18–30,
2010.

[265] M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “Train-
ing DNNs with Hybrid Block Floating Point,” arXiv
preprint arXiv:1804.01526, 2018.

[266] U. Köster, T. J. Webb, X. Wang, M. Nassar, A. K.
Bansal, W. H. Constable, O. H. Elibol, S. Gray, S. Hall,
L. Hornof et al., “Flexpoint: An Adaptive Numerical
Format for Efficient Training of Deep Neural Net-
works,” arXiv preprint arXiv:1711.02213, 2017.

[267] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and

A. Anandkumar, “signSGD: Compressed Optimisation
for Non-Convex Problems,” in International Conference
on Machine Learning. PMLR, 2018, pp. 560–569.

[268] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally,
“Deep Gradient Compression: Reducing The Commu-
nication Bandwidth for Distributed Training,” arXiv
preprint arXiv:1712.01887, 2017.

[269] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-
Bit Stochastic Gradient Descent and its Application to
Data-Parallel Distributed Training of Speech DNNs,” in
Fifteenth Annual Conference of the International Speech
Communication Association. Citeseer, 2014.

[270] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen,
and H. Li, “TernGrad: Ternary Gradients to Reduce
Communication in Distributed Deep Learning,” arXiv
preprint arXiv:1705.07878, 2017.

[271] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,
“DoReFa-Net: Training Low Bitwidth Convolutional
Neural Networks with Low Bitwidth Gradients,” arXiv
preprint arXiv:1606.06160, 2016.

[272] J. Von Neumann, “First Draft of A Report on The
EDVAC,” IEEE Annals of the History of Computing,
vol. 15, no. 4, pp. 27–75, 1993.

[273] J. N. Mitchell, “Computer Multiplication and Division
Using Binary Logarithms,” IRE Transactions on Elec-
tronic Computers, no. 4, pp. 512–517, 1962.

[274] G. Cormode, “Count-Min Sketch.” 2009.
[275] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piaset-

zky, A. Krishnamurthy, and A. Chen, “Runtime Pro-
grammable Switches,” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), 2022, pp. 651–665.

[276] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han,
N. Shyamkumar, S. Burad, A. DeHon, and B. T. Loo,
“Flightplan: Dataplane Disaggregation and Placement
for P4 Programs,” in 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), 2021, pp. 571–592.

[277] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson,
G. Schmuelling, C.-J. Wu, B. Anderson, M. Breughe,
M. Charlebois, W. Chou et al., “MLPerf Inference
Benchmark,” in 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 446–459.

https://www.opencompute.org/products/85/aps-networks-100gbe-barefoot-tofino-based-network-switch
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html#tofino
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html#tofino
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html#tofino

	Introduction
	Machine Learning for Networking
	Programmable Data Planes
	Protocol-Independent Switch Architecture
	Data Plane Programming Language
	P4 Targets
	Switch-ASIC
	SmartNIC
	FPGA
	Software Switch

	Control Plane
	In-Network Computing

	Network-Assisted Machine Learning
	Development timeline of in-network machine learning
	Tree-Based Ensemble Models
	BNN Based Models
	Reinforcement Learning Models
	Other ML Models
	Deployment Scenarios
	Limitations

	Implementation of in-network machine learning algorithms
	Supervised Learning
	Support Vector Machine (SVM)
	Neural Network (NN)
	k-Nearest Neighbors (k-NN)
	Decision Tree (DT)
	Ensemble Tree Models (ET)
	Naïve Bayes (NB)

	Unsupervised Learning
	K-means
	Principal Component Analysis (PCA)
	Self-Organizing Map (SOM)
	Autoencoder
	Isolation Forest (IF)

	Semi-Supervised Learning
	Reinforcement Learning (RL)
	SARSA
	Q-learning

	Challenges and Solutions
	Restricted Number of Stages
	Actions with Dependencies
	Tables with Dependencies

	Limited Amount of Memory
	Inefficient Mapping of inputs in Match-action tables
	Excessive Exact-Match Table Entries

	Non-Supported Data Types
	Floating-point Number
	Negative Number

	Limited Computational Capability
	Multiplication
	Division
	Frequency
	Matrix Multiplication

	Other Limitations

	Lessons Learned and Future Trends
	Lessons Learned
	Future Trends

	Conclusions

